6 Mind attribution is for morality

Liane Young, Adam Waytz

https://doi.org/10.1093/acprof:oso/9780199692972.003.0006 Pages 93–103
Published: August 2013

Abstract

Mental state reasoning is crucial for moral evaluation and social interaction. In the first half of the paper, we discuss recent and ongoing work on mental state reasoning for moral evaluation – judging agents from a position “on high” as an observer or a judge. In the second half of the paper, we turn to moral cognition “on the ground” – mental state reasoning for social interaction. We discuss evidence indicating distinct behavioral and neural signatures of mental state reasoning for distinct motivational contexts – for interacting with ingroups versus outgroups, for cooperation versus competition, and for affiliation versus action prediction.

Keywords: moral judgment and behavior, mind attribution, group membership, effectance motivation, social connection

Subject: Developmental Psychology

Collection: Oxford Scholarship Online

Morality—judging others’ behavior to be right or wrong, as well as behaving in a right or wrong manner towards others—is an essential component of social life. Morality depends critically on our ability to attribute minds to entities that engage in moral actions (towards ourselves and others) and the entities that experience these actions (our own actions and others’).

The cognitive capacities for attributing minds to others and considering the specific contents of those minds (i.e. mental state reasoning or theory of mind) allow us to understand and interact with individuals and even entire groups of individuals. More specifically, mental state reasoning represents a critical cognitive input for behavior explanation, action prediction, and moral evaluation. We deploy our mental state reasoning abilities in order to explain people’s past actions (e.g. Lisa looked for her shoes in the garage because she forgot her mother had moved them to the closet); to predict people’s future behavior (e.g. Mike will tell Barbara his favorite dog joke not knowing that Barbara’s dog has just been hit by a car); and to make moral judgments (e.g. Grace must be a bad person for putting what she thinks is poison into someone else’s coffee). Our capacity to consider other people’s mental states, including their thoughts, their true or false beliefs, and their helpful or harmful intentions, helps us to navigate our social environment. Indeed, as
much research has shown, mental state reasoning functions flexibly across domains, one of which is morality, the focus of this chapter.

The novel claim we make in this chapter is that the primary service of mental state reasoning may be for moral cognition and behavior, broadly construed. In particular, the cognitive capacities for mental state reasoning become less relevant when morality is not at stake. We are motivated to understand the actions of relevant moral agents, to predict people’s actions when those actions affect us, directly or indirectly, and to evaluate moral agents as current or future allies or enemies. Computations like these crucially elicit mental state reasoning.

In this chapter, we will therefore review the literature on mental state reasoning for moral cognition—both for judging other moral actors, from the position of “judge” on high, and also for figuring out, as “actors” on the ground, so to speak, who might help us or hurt us, to whom we have moral obligations (for helping or, minimally, not hurting), and whom we ought to trust or avoid (see Figure 6.1).

Figure 6.1

Mental state reasoning for moral cognition occurs at multiple levels. Arrows indicate direction of mind attribution. Observers who make third party judgments (“Morality on high”) attribute mind to moral actors. Moral actors who interact with allies and enemies engage in mental state reasoning for affiliation, action understanding and prediction (“Morality on the ground”). Actors may also infer the mind of an evaluative judge (“From the mind on the ground to the mind on high”).

Morality on high

In this first section, we discuss the critical role of mental states for third-party moral judgments, including how people judge moral agents who harm others. Mental state reasoning is a key cognitive process for evaluating the guilty and innocent intentions of moral agents (Hart, 1968; Kamm, 2001; Mikhail, 2007). Indeed, recent research on the interaction of mental state reasoning and moral cognition has focused on the dominant role of agents’ mental states vs. the outcomes of agents’ actions for our moral judgments (Cushman, 2008; Young, Cushman, Hauser, & Saxe, 2007).

To target the distinct roles of mental states and outcomes, many of these studies present scenarios in which agents produce either a negative outcome (harm to another person) or a neutral outcome (no harm), based on the belief that they would cause the negative outcome (“negative” belief/harmful intention) or the neutral outcome (“neutral” belief/innocent intention). Participants deliver a moral judgment—evaluating the agent’s action as permissible or forbidden, or deciding how much moral blame the agent deserves for his or her behavior.

An example illustrates the possible tension between mental states and outcomes:
Grace and her co-worker are taking a tour of a chemical factory. Grace stops to pour herself and her co-worker some coffee. Nearby is a container of sugar. The container, however, has been mislabeled “toxic”, so Grace thinks that the powder inside is toxic. She spoons some into her co-worker’s coffee and takes none for herself. Her co-worker drinks the coffee, and nothing bad happens.

This scenario pits harmful intentions against neutral outcomes in representing a failed attempt to harm. In an alternative scenario:

A container of poison sits near the coffee. The container, however, has been mislabeled “sugar”, so Grace thinks the powder inside is sugar. She spoons some into her co-worker’s coffee. Her co-worker drinks her coffee and ends up dead.

In this key scenario, an accident occurs—a bad outcome due to a false belief (but not malicious intent). Across studies relying on similar stimuli, participants assigned more moral weight to the agent’s belief and intent, compared to the outcomes (Young et al., 2007). A simple metric of this effect is that participants almost universally judge an attempted harm (e.g. trying but failing to poison someone) as morally worse than an accidental harm (e.g. accidentally poisoning someone).

Other research has investigated not only the simple contrast between intentions and outcomes but also the relative contributions of distinct internal and external factors (e.g. outcome, causation, belief, and desire) for different kinds of moral judgments (e.g. character, permissibility, blame, and punishment) (Cushman, 2008; Cushman, Dreber, Wang, & Costa, 2009). Importantly, the agent’s belief about whether his or her action would cause harm dominated moral judgments across the board, followed by the agent’s desire to cause harm. The relative contribution of beliefs vs. outcomes was greatest for judgments about the moral character of the agent or the moral permissibility of the action. Punishment judgments depended relatively more on outcomes. Nevertheless, these findings indicate the key role of mental state factors for moral judgments.

Notably, mental state factors may underlie moral judgments even in cases where outcomes appear, on the surface, to determine moral judgments. Consider the case of accidents. Many people assign some blame to agents who cause harmful outcomes, even when they didn’t intend to cause the harmful outcomes. (An interesting exception is psychopathy—in the absence of an emotional response to the harmful outcome, psychopaths rely primarily on the stated innocent intent and deliver abnormally lenient judgments of accidents; Young, Koenigs, Kruepke, & Newman, 2012). Recall the scenario in which Grace accidentally poisons her co-worker because she mistakes the poison for sugar. Again, participants mostly excuse Grace on the grounds of her false belief and innocent intention, but they nevertheless assign some moral blame to Grace for the harm done. Behavioral and neural evidence suggests that this moral blame is determined not simply by the harmful outcome of Grace’s action; instead, participants’ assessment of Grace’s mental state drives this judgment (Young, Nichols, & Saxe, 2010b). Participants judge Grace’s false belief as more unjustified or unreasonable when it leads to a bad (vs. neutral) outcome, and therefore they judge Grace to be more morally blameworthy. Consistent with this behavioral pattern, activity in brain regions for mental state reasoning, including the right temporo–parietal junction (RTPJ) (Jenkins & Mitchell, 2009; Perner, Aichhorn, Kronbichler, Staffen, & Ladurner, 2006; Saxe & Kanwisher, 2003; Young, Camprodon, Hauser, Pascual-Leone, & Saxe, 2010a), is selectively enhanced when people make moral judgments in response to bad outcomes. In other words, people revise their evaluations of agents’ mental states (e.g. whether beliefs were justified or reasonable) in light of the outcome. To summarize, even when we judge accidents harshly, we may do so primarily by considering important mental state factors (e.g. belief justification, negligence, recklessness) and not simply the outcome of the action.
Most of the time, then, internal, unobservable mental states (e.g. beliefs, intentions, desires) carry more moral weight than external outcomes. Extraordinarily, recent research suggests that mental states overwhelm even other external factors, including external, situational constraints (e.g. whether an agent could have done otherwise) (Woolfolk, Doris, & Darley, 2006). In one study, participants read variations of the following story:

Bill discovers that his wife Susan and his best friend Frank have been involved in a love affair. All three are flying home from a group vacation on the same airplane.

In one variation of the story, their plane is hijacked by a gang of ruthless kidnappers who surround the passengers with machine guns, and order Bill to shoot Frank in the head; otherwise, they will shoot Bill, Frank, and the other passengers. Bill recognizes the opportunity to kill his wife’s lover and get away with it. He wants to kill Frank and does so. In another variation: “Bill forgives Frank and Susan and is horrified when the situation arises but complies with the kidnappers’ demand to kill Frank.” When Bill wanted to kill Frank, participants actually judged Bill to be more responsible for Frank’s death, and the killing to be more morally wrong, even though Bill’s desire played no causal role in Frank’s death in either case. Mental state factors are clearly at the forefront of our minds when we’re making moral judgments.

Blaming immoral agents for their harmful desires and intentions, as in the case of vengeful Bill above, may be easy and automatic for most people (although a key exception, patients with focal lesions to the ventromedial prefrontal cortex (vMPFC), is discussed further below). Forgiving accidents, however, presents a greater challenge. Prior research indicates substantial individual differences among healthy adults in the moral judgments of accidents (Cohen & Rozin, 2001; Sargent, 2004; Young & Saxe, 2009a). In one study, participants who showed greater recruitment of brain regions for mental state reasoning, i.e. the RTPJ, were more likely to forgive accidents, showing greater consideration of the agent’s innocent intention (vs. the action’s harmful outcome), compared with participants with lower RTPJ responses during moral judgment (Young & Saxe, 2009a).

In development, full forgiveness or exculpation for accidents does not emerge until approximately 7 years of age, surprisingly late in childhood. Interestingly, 5-year-old children appear to be capable of reasoning about false beliefs: in the paradigmatic “false belief task,” children predict that observers will look for a hidden object where they last saw the object and not in its true current location (Flavell, 1999; Wellman, Cross, & Watson, 2001). However, these same children will largely fail to forgive accidents to the same extent as healthy adults: if a false belief leads an agent to unknowingly cause harm to another (e.g. as a result of mistaking poison for sugar), the agent is judged just as bad as though the harm had been caused on purpose (Piaget, 1965/1932). Thus, the ability to integrate mental states (like beliefs and intentions) into moral judgments, vs. the ability to simply encode mental states, may reflect distinct developmental achievements, with distinct functional profiles in the RTPJ (Young & Saxe, 2008). Consistent with this hypothesis, adults diagnosed with Asperger’s Syndrome, who pass standard false belief tasks, also deliver especially harsh moral judgments of accidents (Moran et al., 2011).

Whereas neurotypical adults have particular difficulty exculpating accidents, another population shows a specific deficit in delivering moral judgments of failed attempts to harm, including failed murder attempts—harmful intentions in the absence of harmful outcomes (Young, Bechara, Tranel, Damasio, Hauser, & Damasio, 2010). Patients with focal lesions to the vMPFC judged attempted harms as more morally permissible compared to neurotypical control participants. Strikingly, vMPFC patients even judged attempted harms as more morally permissible than accidents—a reversal of the normal pattern of moral judgments (Cushman, 2008). Consistent with these behavioral data, a recent fMRI study indicates a positive correlation between vMPFC activity and moral judgments of failed attempts to harm; neurotypical participants with high vMPFC responses judged failed attempts more harshly than individuals with low vMPFC responses (Young & Saxe, 2009a). Together, these results suggest that vMPFC patients may be
unable to trigger an appropriate emotional response to abstract mental state information, i.e. harmful intentions. The vMPFC may not play a role in encoding mental states per se; rather, the vMPFC supports emotional responses to mental state content. This account is consistent with prior work revealing a role for the vMPFC in generating emotional responses to any abstract information (Bechara & Damasio, 2005). Thus, vMPFC patients deliver moral judgments based primarily on the neutral (permissible) outcome, reflecting a “no harm, no foul” mentality.

What, then, are the neural mechanisms that directly support the encoding and integration of mental states in moral judgments? Recent evidence suggests that specific brain regions support multiple distinct cognitive components of mental state reasoning for moral judgment—the initial encoding of the agent’s mental state (Young & Saxe, 2008), the use and integration of mental states (e.g. with outcomes) for moral judgment (Young et al., 2007), spontaneous mental state inference when mental states are not explicitly provided in the scenario (Young & Saxe, 2009b), and even post–hoc reasoning about beliefs and intentions to rationalize or justify moral judgments (Kliemann, Young, Scholz, & Saxe, 2008; Young, Nichols, & Saxe, 2010c; Young, Scholz, & Saxe, 2011).

Building on prior research on the neural substrates for mental state reasoning in the service of action prediction and explanation (Perner et al., 2006; Saxe & Kanwisher, 2003), recent research suggests that a key brain region for moral judgment is the RTPJ. In one study, mentioned above, individual differences in moral judgments were significantly correlated with individual differences in the RTPJ response (Young & Saxe, 2009a). Participants with a high RTPJ response during moral judgment, and a putatively more robust mental state representation (e.g. of the false belief and innocent intention), assigned less blame to agents causing accidental harm. Participants with a low RTPJ response (and weaker mental state representation) assigned more blame, similar to young children and individuals with Asperger’s Syndrome (Moran et al., 2011). One source of developmental change in moral judgments (from a reliance on outcomes to a reliance on mental states) may therefore be the maturation of specific brain regions for representing mental states such as beliefs—consistent with recent research suggesting the RTPJ may be late maturing (Gweon, Dodell-Feder, Bedny, & Saxe, 2012; Saxe, Whitfield-Gabrieli, Scholz, & Pelphrey, 2009).

Finally, disrupting RTPJ activity also disrupts the use of mental state information for moral judgment. A recent study probing moral judgments used transcranial magnetic stimulation (TMS) to produce a temporary “virtual lesion” in the RTPJ (Young et al., 2010b). After using fMRI to functionally localize the RTPJ in each participant, offline and online TMS were used to modulate neural activity in two experiments. In both experiments, TMS to the RTPJ vs. the control region reduced participants’ reliance on mental states in their moral judgments, and consequently increased the role of outcomes. For example, disrupting RTPJ activity led to more lenient judgments of failed attempts to harm; participants based their moral judgments more on the neutral outcome (vs. the harmful intent). Thus, compromised mental state reasoning in the case of neurodevelopmental disorders (e.g. high functioning autism) or via TMS leads to abnormal moral cognition.

The findings reviewed in this section provide behavioral and neural evidence for mental state reasoning as a key cognitive process for moral judgment. In sum, evaluating moral agents and their actions requires observers to represent and assess the underlying mental states.
Morality on the ground

In this second section, we argue that the key relationship between mind attribution and morality extends beyond the domain of judgment. As social animals, we are not merely passive observers or judges of other people’s moral and immoral actions; instead, we are active participants in the social world. We engage in good and bad behaviors toward others, and we must decide how to act toward whom and, in turn, determine who is capable of helping or hurting us. In other words, as moral actors, we must determine who is friend and who is foe. Indeed, the motivation for affiliation with others (e.g. to infer potential allies) and the motivation for action prediction (e.g. to infer potential enemies) are major determinants of mind attribution (Epley, Waytz, & Cacioppo, 2007; Waytz, Gray, Epley, & Wegner, 2010; Waytz, Morewedge, Epley, Monteleone, Gao, & Cacioppo, 2010). It is the moral salience of these social contexts that requires and engages mind attribution both for understanding others and for anticipating their actions.

Whether reasoning about allies or enemies, people must engage in mind attribution. Determining who’s with us and who’s against us (and, at a more basic level, who counts as “us” vs. “them”) through intergroup categorization, is typically an automatic and spontaneous process (Brewer, 1979). Minimal cues to in- and out-group status lead people to encode alliances and coalitions (Kurzban, Tooby, & Cosmides, 2001; Turner, Brown, & Tajfel, 1979). Furthermore, the same neural architecture responds to in- and out-group members after minimal exposure to these individuals. The amygdala, a region involved in processing motivationally relevant information, is responsive to faces of both in-group members and out-group members depending on the processing goals of the perceiver (Lieberman, Hariri, Jarcho, Eisenberger, & Bookheimer, 2005; Van Bavel, Packer, & Cunningham, 2008). Intergroup categorization thus allows us to determine who in our social environment is capable of helping and harming us, and whom we ourselves might be able to help or harm. Thus, allies and enemies alike require social reasoning but elicit distinct motivational strategies. As we argue below, the motivation for affiliation underlies our reasoning about allies, whereas the motivation for action prediction, for anticipating future actions or even attacks, underlies our reasoning about enemies.

The motivation to affiliate with others, and to do good for others, triggers the desire to know others’ minds. Understanding the minds of other people is critical for coordination, cooperation, and communication (Epley, & Waytz, 2010). Indeed, a number of research programs have suggested that the capacity for understanding other minds is precisely the capacity that has allowed humans to operate effectively in large social groups (Baron-Cohen, 1995; Humphrey, 1976; Tomasello, Carpenter, Call, Behne, & Moll, 2005). Furthermore, interpersonal liking is often correlated with mind attribution (Kozak, Marsh, & Wegner, 2006), and people will attribute particular mental states, such as secondary emotions, preferentially to in- vs. out-group members (Harris & Fiske, 2006; Leyens et al., 2000). Thus, the motivation for social connection, especially with those within our own moral circle, is a major determinant of mind attribution.

In particular, motivation for social connection leads people to more accurately infer people’s emotions from facial or vocal cues (Pickett, Gardner, & Knowles, 2004). This motivation can also increase people’s tendency to perceive mental states in non–human entities, such as supernatural agents, technology, and pets, thereby anthropomorphizing them (Aydin, Fischer, & Frey, 2010; Epley, Akalis, Waytz, & Cacioppo, 2008; Epley, Waytz, Akalis, & Cacioppo, 2008). Furthermore, neuroimaging studies have shown that cooperation and generous behavior toward others elicit activity in brain regions that support social cognition including the medial prefrontal cortex (MPPC) (McCabe, Houser, Ryan, Smith, & Trouard, 2001; Waytz, Zaki, & Mitchell, 2012), demonstrating the deployment of mind attribution for positive moral behavior. These findings show that when people seek positive social interactions with other moral agents, they engage in mental state reasoning and may even become hyperattentive to specific features (e.g. emotions) of their social partners’ mental states.
Likewise, the motivation to harm others, including our enemies, and to defend against others’ harmful actions, also requires a robust understanding of other minds, especially for predicting future actions or attacks. Thus, negative moral interactions are also accompanied by the desire to know others’ mental states. As we describe below, the motivation to understand and predict others’ actions is therefore another major determinant of mind attribution (Dennett, 1987; Epley et al., 2007).

A number of studies have demonstrated that motivation to attain mastery over others leads to mind attribution. In one instance, this effect obtains for non-human agents; entities that operate unpredictably and that require explanation elicit more attribution of human-like mental states (i.e. anthropomorphism) (Waytz, Morewedge et al., 2010; Morewedge, 2009). When people are motivated to gain control or to explain events in the environment, they will often do so by looking to anthropomorphic Gods or other mentalistic agents (Gray & Wegner, 2010a; Kay, Gaucher, Napier, Callan, & Laurin, 2008; Kay, Moscovitch, & Laurin, 2010; Kelemen & Rosset, 2009). Together, these studies support the idea that the motivation to explain, predict, and understand—the motivation to attain mastery over others—increases mental state reasoning.

Functional neuroimaging evidence suggests that when people are placed in competitive situations with others, in which they must predict and understand others’ behavior, brain regions for mental state reasoning including the MPFC (Decety, Jackson, Sommerville, Chaminade, & Meltzoff, 2004) and TPJ (Halko, Hlushchuk, Hari, & Schurmann, 2009) are robustly recruited. One study using positron emission topography (PET) demonstrated that during a competitive game, the MPFC was preferentially engaged when participants believed they were playing an entity capable of strategic moral or immoral behavior (a human being) vs. an entity incapable of such behavior (Gallagher, Jack, Roepstorff, & Frith, 2002). Together, these studies suggest that mind attribution supports not only good moral behavior, such as cooperation with allies, but also strategic interaction with unpredictable others, including enemies.

To demonstrate the relationship between mind attribution and distinct moral motivations towards enemies and allies, we conducted a series of studies targeting both the motivation for social connection and the motivation for action prediction in a single paradigm (Waytz & Young, 2012). In a first study, American participants answered questions about the United States Army and the Taliban, obvious ally and enemy groups, respectively. Participants rated how much they desired social connection with each group and how much they were motivated to predict the actions of each group. Motivation for social connection predicted attribution of mind to the US Army (in-group/ally), whereas motivation for action prediction did not. By contrast, motivation for action prediction predicted attribution of mind to the Taliban (out-group/enemy), whereas motivation for social connection did not. A second study asked American Democrats and Republicans (during the contentious 2010 mid-term elections) to evaluate both the Democratic and Republican party on similar measures, and the same pattern of results emerged. Motivation for social connection uniquely predicted mind attribution toward participants’ own political party, whereas motivation for action prediction uniquely predicted mind attribution toward the opposing political party. Taken together, these findings demonstrate that anticipating both positive and negative social interactions (with other moral agents) provokes mind attribution.

Although these dual motivations for effective social interaction engage mind attribution, they may engage different forms of mind attribution. In fact, fMRI research demonstrates that different nodes of the neural network for theory of mind are preferentially engaged by cooperation vs. competition. In one study, in which participants were instructed to play a strategic game, the posterior cingulate was more involved in cooperation, whereas the MPFC was more involved in competition (Decety et al., 2004). Another study demonstrated that reasoning about others’ cooperative mental states vs. deceptive mental states recruited distinct brain regions for theory of mind. Whereas both cooperation and deception elicited activation in the TPJ and precuneus, deception selectively increased activation in the MPFC (Lissek et al., 2008). Based on this pattern, the authors suggest that different systems are involved in processing mental states that match an observer’s expectations (in this case, cooperative intentions) vs. mental states intended to undermine...
the observer’s expectations. More broadly, these neural findings suggest distinct cognitive processes for mental state reasoning in cooperative vs. competitive contexts.

One hypothesis regarding the differential types of mind attribution for cooperation vs. competition suggests two distinct dimensions of mind. People think about mind in terms of agency (i.e. the capacity to plan, to think, and to intend), as well as experience (i.e. the capacity to feel pain and pleasure) (Gray, Gray, & Wegner, 2007). The attribution of experience grants a person status as a moral patient (i.e. someone who is capable of experiencing the moral acts of others), whereas the attribution of agency grants a person status as a moral agent (i.e. someone who is capable of doing moral acts to others) (Gray & Wegner, 2009; Gray & Wegner, 2010b). Therefore, people express more moral concern toward moral patients, whereas they view moral agents as morally responsible and, therefore, blameworthy or praiseworthy for their actions (Gray et al., 2007).

The tendency to associate experience and agency with distinct moral characters suggests the motivation for social connection, and the motivation for action prediction might differentially trigger attributions of experience and agency, respectively. The desire to give moral care to and receive moral care from another person through prosocial behavior, including cooperation. Therefore, the motivation for social connection should preferentially increase the attribution of experience to others. By contrast, the motivation for action prediction entails identifying entities that are capable of planning and acting intentionally and, furthermore, determining the content of those plans and intentions. This motivation should be uniquely linked to the preferential attribution of agency to others (Kozak & Czipri, 2011). Two studies demonstrate that when people are tasked with predicting the actions of a group vs. tasked with affiliating with that group, they prioritize information about the group’s capacity for agency vs. experience (Waytz & Young, 2012). Additional behavioral and neural research should uncover whether differential motivations for positive and negative moral interactions map onto the attributions of distinct dimensions of mind.

Most important, considerable research suggests that moral action, and the motivation to engage in moral action—whether positive or negative—depends crucially on mind attribution. People consider the minds of other moral actors not only when judging third-party behavior, but also when attempting themselves to engage with others, either allies or enemies. Behaving well and behaving badly may reside on opposite ends of the moral spectrum, but both depend crucially on mental state reasoning—reasoning about the mind of friends and foes.

From the mind on the ground to the mind on high

In this chapter, we have described how mind attribution is critical for judging moral actions as well as for engaging in good and bad actions towards others. Yet another link between mind attribution and morality, to be explored in future research, is the moral actor’s consideration of an evaluative mind or an ultimate judge (see Figure 6.1). A number of studies suggest that when people decide whether to engage in righteous or reproachable actions, they consider whether others are watching, a tendency commonly known as impression management (Leary & Kowalski, 1995). For instance, in monetary exchange games that allow people to behave selfishly or generously, people behave more cooperatively when merely primed with reminders of a judgmental God (Shariff & Norenzayan, 2007) or cues that others are watching (Haley & Fessler, 2005). Perceiving the presence of a mindful, non–human agent also increases honesty and hesitance to cheat in a game (Bering, McLeod, & Shackleford, 2005; Waytz, Cacioppo, & Epley, 2010).

Future research should investigate whether personal decisions about acting morally or immorally, in fact, engage the tendency to search for or perceive a mind on high—either the mind of peer observers or an ultimate moral judge. For now, though, it is clear that mind attribution plays a primary role in both moral judgment and social interactions between moral actors.
References

Young, L., Bechara, A., Tranel, D., Damasio, H., Hauser, M., & Damasio, A. (2010a). Damage to ventromedial prefrontal cortex impairs judgment of harmful intent. *Neuron,* 65, 845-51. 10.1016/j.neuron.2010.03.003

Google Scholar WorldCat Crossref