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A B S T R A C T   

The theory of mind network (ToMN) is a set of brain regions activated by a variety of social tasks. Recent work 
has proposed that these associations with ToMN activity may relate to a common underlying computation: 
processing prediction error in social contexts. The present work presents evidence consistent with this hypoth
esis, using a fine-grained item analysis to examine the relationship between ToMN activity and variance in 
stimulus features. We used an existing dataset (consisting of statements about morals, facts, and preferences) to 
examine the variability in ToMN activity elicited by moral statements, using metaethical judgments (i.e. judg
ments of how objective/subjective morals are) as a proxy for their predictability/support by social consensus. 
Study 1 validated expected patterns of behavioral judgments in our stimuli set, and Study 2 associated by- 
stimulus estimates of metaethical judgment with ToMN activity, showing that ToMN activity was negatively 
associated with objective morals and positively associated with subjective morals. Whole brain analyses indi
cated that these associations were strongest in bilateral temporoparietal junction (TPJ). We also observed 
additional by-stimulus associations with ToMN, including positive associations with the presence of a person 
(across morals, facts, and preferences), a negative association with agreement (among morals only), and a 
positive association with mental state inference (in preferences only, across 3 independent measures and 
behavioral samples). We discuss these findings in the context of recent predictive processing models, and 
highlight how predictive models may facilitate new perspectives on both metaethics and the nature of distinc
tions between social domains (e.g. morals vs. preferences).   

1. Introduction 

Theory of mind refers to the ability to represent internal mental 
states (Premack and Woodruff, 1978). The Theory of Mind network 
(ToMN) is a set of brain regions that are active during mental inference 
and social cognition, with core regions in this network—medial pre
frontal cortex (MFPC), precuneus (PC), and bilateral temporoparietal 
junction (RTPJ/LTPJ)—showing activation during a variety of social 
tasks (for review, see Amodio and Frith, 2006; Schurz et al., 2014, 2017; 
Van Overwalle, 2009). These tasks include reading comics and stories 
about beliefs (Ciaramidaro et al., 2007; Dodell-Feder et al., 2011; 
Fletcher, 1995; Gallagher et al., 2000; Saxe and Kanwisher, 2003; Saxe 
and Powell, 2006; Young et al., 2010a, 2010b), reading stories about 
moral violations (Young et al., 2010a, 2010b; Young et al., 2007; Young 

and Saxe, 2009), watching social animations (Blakemore, 2003; Gobbini 
et al., 2007), taking others’ perspectives (Ruby and Decety, 2003; 
Vogeley et al., 2001), making strategic decisions in economic games 
(Kircher et al., 2009), inferring personal traits (Harris et al., 2005; Ma 
et al., 2012a, 2012b), forming impressions (Baron et al., 2011; Bhanji 
and Beer, 2013; Cloutier et al., 2011; Ma et al., 2012a, 2012b; Men
de-Siedlecki et al., 2013; Mende-Siedlecki and Todorov, 2016; Mitchell 
et al., 2005; Park and Young, 2020; Schiller et al., 2009), and even 
listening to narratives, in which case the similarity of representations in 
the ToMN reflects shared experiences across listeners (Yeshurun et al., 
2017). The ToMN is also differentially activated by domains of social 
information—e.g. in bilateral TPJ, moral statements elicit more activity 
than statements about facts and preferences (Theriault et al., 2017; also, 
see Jenkins and Mitchell, 2010). However, knowing that social tasks and 
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stimuli activate the ToMN can only advance a scientific understanding of 
the ToMN so far: it tells us that particular tasks and stimuli with 
particular features activate the network, but it leaves us to triangulate 
between this noisy pattern of associations to understand why it was 
produced. Ideally, psychologists and neuroscientists would like to un
derstand a more fundamental problem: what underlying computational 
process is responsible for the activity observed in these socially-sensitive 
regions? 

Answering this question completely is beyond the scope of any one 
paper, but our aim here is to provide empirical support for one recent 
and promising hypothesis, which has proposed that ToMN activity (and 
in particular, activity in TPJ) reflects the updating of predictions in so
cial contexts (Koster-Hale and Saxe, 2013; also, see Kim et al., 2020). 
That is, assuming that a brain uses prior experience to form and issue 
predictions about incoming sensory signals (e.g. sights, sounds; Rao and 
Ballard, 1999), it is hypothesized that the brain performs this same 
fundamental process in social settings, only at a higher level of 
abstraction. That is, the brain has been hypothesized to issue predictions 
about both the observable behaviors enacted by others (as, to an 
observer, these behaviors are combinations of more basic sensory in
formation) and the latent mental states that motivate behavior (which 
are not observable, but could be inferred from sensory signals and prior 
knowledge). Critically, this hypothesis implies that the brain can filter 
sensory signals efficiently, as predictable signals can be ignored as un
informative, and bottom-up information processing can be limited to 
encoding prediction error (i.e. the difference between the sensory signal 
as predicted, and the sensory signal as actually received). 

This predictive hypothesis for the ToMN is derived from more gen
eral predictive coding frameworks (e.g. Barrett and Simmons, 2015; 
Chanes and Barrett, 2016; A. Clark, 2013, 2015; Den�eve and Jardri, 
2016; Friston et al., 2016, 2017; Hohwy, 2013; Hutchinson and Barrett, 
2019; Joiner et al., 2017; Koster-Hale and Saxe, 2013; Rao and Ballard, 
1999; Shadmehr et al., 2010; Spratling, 2017; Van de Cruys et al., 2014), 
which suggest that this computational process—issuing predictions, 
encoding prediction error, and using prediction error (i.e. information) 
to form new predictions—is the general computation performed at all 
hierarchical levels of the brain. That is, each cortical area is thought to 
issue predictions, filter predictable signals, and pass prediction error up 
the cortical hierarchy. Signals, here, refer to either incoming sensory 
signals (e.g. light through the retina, pressure on skin) or their multi
modal compressions (e.g. the unique combination of sights, sounds, 
smells, etc. that constitute a human social interaction). These predictive 
coding frameworks are grounded in principles of data compression (i.e. 
information theory), where signals are only informative to the extent 
that they reduce uncertainty, allowing prediction error to serve as a 
common currency of encoded information (Shannon and Weaver, 
1964/1964). 

Returning to the context of mental inference and social cognition: if 
your brain’s predictions about someone’s words, behaviors, etc. (i.e. 
predictions about compressed representations of raw sensory signals) 
are perfectly accurate, then your brain’s predictions about that person’s 
latent mental state need not be updated. It has been proposed that 
encoding prediction error or updating predictions related to latent 
mental states may elicit BOLD activity in the ToMN (Koster-Hale and 
Saxe, 2013), meaning that if there is no information to encode, then 
ToMN activity is expected to be low, relative to cases where unpre
dictable mental state information must be encoded. Thus, ToMN activity 
is expected to be relatively lower when signals (observable behavior, 
words, etc.) are predictable, and ToMN activity is expected to be rela
tively higher when these signals are unpredictable (Koster-Hale and 
Saxe, 2013). 

Preliminary work has been consistent with this hypothesis (e.g. 
Schuwerk et al., 2017; for review, see Koster-Hale and Saxe, 2013); 
however, it has also been constrained by methods that prevent a 
simultaneous examination of pre-existing social predictions (i.e. pre
dictions formed outside of the experimental setting), and fine-grained 

within-subject statistical analyses. Both factors are important if our re
sults are to generalize beyond our experimental context and into more 
naturalistic settings. If social predictions are not pre-existing (i.e. they 
are formed in the context of the experiment), then the effect of violating 
these predictions may be artificially emphasized. Further, by analyzing 
within-subject variability, we can base inferences on naturally varying 
features of our stimuli-set (e.g. Westfall et al., 2017; see Section 4.3 for 
further discussion) as opposed to grounding inference in a priori cate
gories, which may homogenize real variance among the examples they 
contain (e.g. S. A. Gelman and Rhodes, 2012). 

These factors introduce some ambiguity into interpretations of prior 
work. For example, several studies have introduced characters to par
ticipants in short vignettes, leading them to form an initial impression 
and set of expectations. Following these introductions, ToMN activity 
increased when characters were described as holding contradictory 
beliefs (Saxe and Wexler, 2005), as engaging in contradictory behaviors 
(Dungan et al., 2016), or as possessing contradictory traits (Ma et al., 
2012a, 2012b; Mende-Siedlecki et al., 2013), relative to initial expec
tations. However, later work raised the possibility that ToMN activity in 
these designs may be contingent on the in-lab formation of initial ex
pectations: when characters were not initially familiarized to partici
pants, unpredictable beliefs (e.g. someone believing plants will burst 
into flame if watered) did not elicit increased ToMN activity (relative to 
predictable beliefs; Young et al., 2010a, 2010b). Likewise, in studies 
using videos of behavior, ToMN activity is contingent on the motivation 
to engage in mental inference: when actors in a video perform uncon
ventional actions (e.g. switching a light on with their knee when their 
hands are free, as opposed to switching it on while carrying a heavy 
load), ToMN activity increases (Brass et al., 2007; de Lange et al., 2008), 
but this effect fails to replicate when participants are not explicitly 
instructed to attend to the actor’s intentions (Ampe et al., 2014). Other 
studies have leveraged pre-existing social predictions by using charac
ters that were already familiar to participants, either as actual friends 
(Park and Young, 2020) or as known political figures (Cloutier et al., 
2011), but within these studies fine-grained analyses of within-subject 
variability could not be performed (e.g. Park and Young (2020) exam
ined associations with by-subject averages of RTPJ activity, but their 
design precluded trial-level analyses). 

The present work addresses both of these issues. We leverage pre- 
existing mental inferences, by using moral statements that were pre
tested to confirm or contradict (to varying degrees) people’s preexisting 
moral beliefs. Further, to leverage analyses of within-subject variability 
we used item analyses (Bedny et al., 2007; Dodell-Feder et al., 2011; 
Donnet et al., 2006; Westfall et al., 2017), a powerful (but often over
looked) method for examining by-stimulus variability and its relation
ship to stimuli features. In particular, unlike by-subject analyses, item 
analyses allow covariates of interest to be collected in independent 
samples of participants, allowing us to use larger samples to estimate 
by-stimulus averages of features of interest. Item analyses can also make 
use of modern multilevel modeling statistical methods, using informa
tion about the structure of the dataset to improve estimates (Baayen 
et al., 2008; Barr et al., 2013; Judd et al., 2012; Westfall et al., 2014, 
2017). To address both issues simultaneously, would require stimuli that 
leverage pre-existing predictions about beliefs and, at the same time, can 
be characterized by stimuli features that approximate each stimuli’s 
average predictability across participants. Fortunately, moral state
ments satisfied both of these constraints, with metaethical judgments 
serving as a proxy for moral predictability. 

1.1. Metaethical variability within the moral domain 

In the present work, we performed a secondary analysis of an 
existing dataset (Theriault et al., 2017), to address the social prediction 
hypothesis (Koster-Hale and Saxe, 2013). The existing dataset consisted 
of fMRI data that was previously collected and analyzed to test differ
ences in ToMN activity elicited by factual, preferential, and moral 
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statements (Theriault et al., 2017). Moral beliefs are methodologically 
suited to our aims,1 as (1) they are important to impression formation (i. 
e. individuals are motivated to predict what moral beliefs others hold), 
meaning predictions are formed outside the lab, and (2) there is some 
consensus across individuals (within a culture) that some moral beliefs 
should be endorsed and others opposed, meaning that there is structured 
and generalizable (across people) variability in predictions about moral be
liefs. Regarding point (1): as moral beliefs are formed outside the lab, 
held strongly, and occupy a central position in individuals’ identities 
(Heiphetz et al., 2018; Strohminger and Nichols, 2014, 2015), we ex
pected that participants would be motivated to predict what moral be
liefs generic people (i.e. speakers for whom participants have no prior 
knowledge; as opposed to known friends or politicians, as in prior work; 
Cloutier et al., 2011; Park and Young, 2020) were likely to hold. By 
contrast, compared to morals, factual statements contained less infor
mation about others’ beliefs/mental states, and so were not expected to 
elicit high ToMN activity. Similarly, preferences are by definition more 
person-specific (Heiphetz et al., 2014), meaning that high-precision 
predictions about preferences cannot be made the context of a generic 
person.2 We return to the topic of predictive precision in the general 
discussion (section 4.2), but for present purposes it is sufficient to say 
that high-precision predictions carry more potential to generate pre
diction error, and low-precision predictions carry less, as a precise 
prediction has a tightened probabilistic distribution and makes de
viations from the mean more informative (Feldman and Friston, 2010; 
Kim et al., 2020; Van de Cruys et al., 2014). Initial analyses were 
consistent with this hypothesis at the categorical level, with moral 
statements eliciting greater ToMN activity than either facts or prefer
ences (particularly within PC and bilateral TPJ; Theriault et al., 2017). 
Preferences also elicited greater ToMN activity than facts in this prior 
work. 

Point (2), that some moral consensus exists (within a culture) and 
varies across moral beliefs, allowed us to examine variability within the 
moral domain. Among moral statements, some are more predictably 
endorsed than others, and in a moral context, metaethical judgments act 
as a proxy for this predictability. Metaethical judgments are judgments 
about what kind of information a moral statement conveys—e.g. 
whether it is objective (more fact-like, less preference-like), or subjec
tive (more preference-like, less fact-like). Metaethical judgments vary 
across stimuli (i.e. some views are considered more or less objective/ 
subjective than others; Beebe, 2014; Goodwin and Darley, 2008, 2012; 
Heiphetz and Young, 2017; Sarkissian et al., 2011; Theriault et al., 2017; 
Wright et al., 2013) and are highly associated with social consensus 
(Ayars and Nichols, in press; Beebe, 2014; Goodwin and Darley, 2012; 
Heiphetz and Young, 2017). That is, moral statements that elicit 

widespread agreement (e.g. slavery is wrong) are considered to be more 
objective (and less subjective) than others (e.g. eating meat is wrong). 
Study 1 verifies that this metaethical variability exists among moral 
stimuli in our dataset. 

Putting this into the context of prediction: when someone makes a 
moral assertion that is judged by others (on average) as objective, the 
assertion should be predictable on the basis of social consensus (i.e. most 
people would endorse it). Further, in the context of information theory 
(Shannon and Weaver, 1964/1964, discussed above)—where signals are 
only informative to the extent that they reduce uncertainty—objective 
moral statements may actually communicate less information, as they are 
statements that most people would already be predicted to believe. By 
contrast, when someone makes a moral assertion that is judged as sub
jective, the assertion should be less predictable on the basis of social 
consensus (i.e. most people would not endorse it). Again, in the context 
of information theory, subjective moral statements communicate more 
information, as they are statements that most people would not be pre
dicted to believe. In the present work, we exploited this 
theoretically-grounded equivalence between objectivity/subjectivity 
and information in our existing dataset, examining the relationship be
tween ToMN activity and judgments of moral objectivity in a diverse 
sample of stimuli (Theriault et al., 2017). 

1.2. Present work 

The present work used an existing dataset (Theriault et al., 2017) to 
examine the relationship between by-stimulus ToMN activity and 
metaethical judgments (e.g. how objective, or ‘fact-like’, moral claims 
are; or alternatively, how subjective, or ‘preference-like’, moral claims 
are). As multiple behavioral measures could not be collected in the 
scanner (agreement was collected on a 4-point scale in the scanner, but 
not used in any analysis), we examined the relationship between ToMN 
activity and by-stimulus ratings collected in independent online sam
ples. Study 1 consisted of an online sample (N ¼ 49) where participants 
read 72 statements (each designed to be read as a statement about facts, 
morals, or preferences), and rated each on the extent that they 
agreed/disagreed with it, and the extent that it was “about facts”, “about 
morality”, and “about preferences”. This online sample accomplished 
three goals. First, it validated our stimuli design (confirming that our 
facts were more fact-like than they were moral-like or preference-like). 
Second, consistent with prior work (Ayars and Nichols, in press; Beebe, 
2014; Goodwin and Darley, 2012; Heiphetz and Young, 2017), com
parisons between subgroups confirmed that moral statements supported 
by a social consensus (positive-consensus moral statements) were 
perceived as more objective than moral statements that were opposed 
to, or ambiguous with respect to, a social consensus (neg
ative-consensus/no-consensus). Finally, Study 1 provided estimates of 
by-stimulus metaethical judgments to be used in Study 2: a maximal 
mixed effects models was fitted to the subjects and stimuli of the online 
sample (Barr et al., 2013), and by-stimulus estimates of metaethical 
judgments were extracted (best linear unbiased predictors, i.e. BLUPs; 
Baayen et al., 2008). 

Study 2 examined the association between by-stimulus metaethical 
judgments and ToMN activity in DMPFC, VMPFC, PC, and bilateral TPJ 
regions of interest (ROIs). We used maximal mixed effects models to 
estimate by-stimulus ToMN activity from a sample of 25 participants 
and 72 stimuli (Baayen et al., 2008; Barr et al., 2013; Westfall et al., 
2017), then compared these estimates with by-stimulus estimates of 
item features, extracted from Study 1. We also explored additional 
by-stimulus relationships with item feature estimates extracted from 
seven other online samples, measuring judgments of valence and arousal 
(N ¼ 42), mental imagery (N ¼ 46), whether a person was present in the 
scenario (N ¼ 48), and whether a scenario evoked mental state infor
mation generally (N ¼ 48), about others’ mental states (N ¼ 44), or 
about one’s own mental states (N ¼ 46). For our core analysis, 
comparing ToMN activity and by-stimulus estimates of metaethical 

1 Moral beliefs are also somewhat unique in the empirical literature exam
ining social predictions, as prior work has generally focused on predictions in 
the context of impression formation (e.g. Cloutier et al., 2011; Mende-Siedlecki 
et al., 2013; Park and Young, 2020).  

2 Of course, the boundaries between morals, facts, and preferences are porous 
and, despite our experimental operationalization of these categories, they 
should not be taken to represent natural kinds. For example, people may prefer 
pleasure to pain, but if participants are asked whether “pleasure is better than 
pain” is a moral belief, a fact, or a preference, they may report a preference for 
pleasure over pain as more fact-like. For this reason, we verified (in Study 1) 
how our stimuli were interpreted (as fact-like, moral-like, and preference-like). 
In the same vein, readers may be able to imagine a preference that should be 
shared by many or most people—however, that such counterexamples can be 
generated only underscores that morals, facts, and preferences are socially 
constructed categories. As the present study is concerned with variability 
among moral claims, it is enough for our purposes to claim that people are 
generally more motivated and able to deploy predictions about a generic 
other’s moral beliefs compared to their preferences. We are not claiming that 
people are completely unmotivated to predict (or are incapable of predicting) 
the preferences of generic others. 
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judgment, we controlled for a variety of syntactic and semantic features 
that may act as confounds. Overall, our findings demonstrate that the 
ToMN is responsive to variance among moral statements: more objective 
moral claims elicit less ToMN activity, and more subjective moral claims 
elicit greater ToMN activity. 

As the present work was a secondary analysis of an existing dataset, 
we have tried to remain appropriately conservative in our statistical 
analysis, testing specific relationships (corrected for multiple compari
sons) only when justified by omnibus testing (see Tables S7, S9, & S10, 
in the online supplemental materials). These steps occasionally lead to 
non-traditional forms of reporting analyses (e.g. grouping ToMN ROIs 
and analyzing VMPFC separately in Study 2), but these steps were taken 
to ensure that generalizations were conservative and justified. 

2. Study 1 

Study 1 validated our stimulus set in an online sample, confirming 
that moral statements supported by a social consensus were perceived as 
more objective (Ayars and Nichols, in press; Beebe, 2014; Goodwin and 
Darley, 2012; Heiphetz and Young, 2017). The stimulus set consisted of 
72 statements about facts, morals, and preferences, and were designed 
to fit within consensus subcategories, eliciting either positive-consensus 
(where most people would agree), negative consensus (where most 
people would disagree), or no-consensus (where neither agreement nor 
disagreement was strong; Fig. 1; also see 2.1.2). Using an independent 
online sample allowed us to extract by-stimulus estimates of metaethical 
judgments in a sample approximately twice the size of the fMRI sample. 
To measure metaethical judgment, we asked participants to rate each 
statement on the extent that it was about facts, about morals, and/or 
about preferences (Theriault et al., 2017). This method has several ad
vantages: (a) it validates stimulus conditions, as facts should be rated as 
most fact-like, morals as most moral-like, and preferences as most 
preference-like; and b) it avoids artificially imposing relationships 
among ratings (unlike bipolar methods, where the design requires that 
for a statement to be more fact-like, it must necessarily be less 
preference-like). Our method allows any correlations among ratings to 
emerge independently, without imposing them by design. 

2.1. Method 

2.1.1. Participants 
Participants were recruited online using Amazon Mechanical Turk 

(AMT) at an approximate rate of $6/hour, in line with standard AMT 

compensation rates. The final sample consisted of 49 adults (25 female, 
23 male, 1 unspecified; MAge ¼ 33.5 years, SDAge ¼ 10.7 years, RangeAge 
¼ 19–59 years), after excluding two participants for failing an attention 
check that asked them to describe any statement they had read. The 
majority of our sample had either entered or completed college/uni
versity (maximum educational attainment of high school ¼ 16.3%; some 
college/university ¼ 36.7%; completed college/university ¼ 38.8%; 
completed graduate degree ¼ 8.2%). The majority of the sample was 
Caucasian (White/Caucasian ¼ 83.7%; Black/African American ¼ 6.1%; 
Asian ¼ 10.2%; Pacific Islander ¼ 2.0%; Other ¼ 2.0%), and Non- 
Hispanic (Hispanic ¼ 8.2%; Non-Hispanic ¼ 91.8%). The Boston Col
lege Institutional Review Board approved studies 1 and 2, and each 
participant provided consent before beginning. 

2.1.2. Procedure 
Participants read a series of statements (e.g. “It is irresponsible for 

airlines to risk the safety of their passengers”; see Appendix A for all 
statements), and, for each, rated a) their agreement (“To what extent do 
you disagree/agree; 1–7, “completely disagree”—“completely agree”), 
and b) the extent that the statement was about facts, about morals, and 
about preferences (Rating-type: fact-like/moral-like/preference-like; “To 
what degree is this statement about … [facts, morality, preferences]”; 
1–7, “not at all”—“completely”). The order of rating-types was coun
terbalanced across participants. Participants were instructed that they 
would complete a “statements task”, where they would “read short 
statements and decide whether you agree or disagree with them". 
Statements were designed to be interpreted as either facts, morals, or 
preferences, and were evenly divided between categories (nFact ¼ 24, 
nMoral ¼ 24, nPreference ¼ 24), but participants were not explicitly alerted 
to this element of design. Each category included three consensus sub
categories: a) positive-consensus, where most people would agree with 
the statement (n ¼ 6); b) negative-consensus, where most people would 
disagree (n ¼ 6); and c) no-consensus, where there would be no strong 
positive or negative consensus (n ¼ 12). No-consensus statements (as 
opposed to controversial statements) were used because the feature of 
interest was social consensus; in other words, no-consensus statements 
were intended to elicit a unipolar, non-skewed distribution of agree
ment. By contrast, controversial statements (e.g. “abortion is wrong”) 
would presumably produce a bimodal distribution of agreement, intro
ducing strong individual differences that could decrease the power of 
our item analyses. The no-consensus subcategory was also larger relative 
to other subcategories on account of an uninformative distinction that 
was irrelevant to the final design: six no-consensus facts were true and 

Fig. 1. Sample stimuli. Statements varied in content (fact/moral/preference) and agreement (positive-consensus/no-consensus/negative-consensus). See Appendix A 
for the full text of all stimuli. 

J. Theriault et al.                                                                                                                                                                                                                               



Neuropsychologia 143 (2020) 107475

5

six were false. Statements did not contain any mental state markers (e.g. 
“She thinks,” “He believes”). 

2.1.3. Statistical methods 
Studies 1 and 2 used mixed effects analyses to model crossed by- 

subject and by-stimulus random effects (Baayen et al., 2008; Judd 
et al., 2012; Westfall et al., 2014). In traditional models (e.g. ANOVA) 
these two sources of variance cannot be modeled simultaneously, 
meaning that we would be forced to average across stimuli (or across 
participants), and limit our conclusions to the exact stimuli (or partici
pants) that were tested (Baayen et al., 2008; H. H. Clark, 1973; Judd 
et al., 2012; Westfall et al., 2017). Mixed effects analysis also allow for 
the estimation of BLUPs (best linear unbiased predictors; Baayen, 2008; 
Baayen et al., 2008). BLUPs are by-stimulus estimates of metaethical 
judgments for each stimuli, and are preferable to simple by-stimulus 
averages for two reasons: a) by-stimulus BLUPs are independent from 
by-subject variance, meaning that estimates were specific to the sce
narios (and could be compared with by-stimulus estimates of ToMN 
activity in Study 2); and b) by-stimulus BLUPs incorporate the sample 
distribution into the estimate (i.e. they are semi-pooled estimates; A. 
Gelman et al., 2012), meaning that they anticipate regression to the 
mean and mitigate against outliers. Analysis was conducted in R (R Core 
Team, 2016), using the lme4 package (Bates et al., 2015), and p values 
for fixed effects were calculated using the Satterthwaite approximation 
of degrees of freedom, implemented in the lmerTest package (Kuznetsova 
et al., 2017). 

2.1.4. Data and software sharing 
De-identified raw behavioral data and code to reproduce all analyses 

and figures are available at https://osf.io/cx4dp/. 

2.2. Results 

2.2.1. Validating agreement sub-categories 
Agreement ratings were fit with a maximal mixed effects model. As 

fixed effects, the model included main effects of category (fact/moral/ 
preference), consensus (positive-/no-/negative-consensus), and their 
interaction. As random effects across subjects, the model included 
random intercepts, and random slopes for category, consensus, and their 
interaction. As random effects across stimuli, random intercepts were 
included. Condition means are presented in Table S1 of the online 
supplemental materials.  

lmer(agreement ~ 1 þ category*consensus                                                  

þ (1 þ category*consensus | subject)                                                         

þ (1 | stimuli))                                                                                      

We observed some differences in agreement across categories, but 
critically, differences among consensus sub-categories were consistent 
with our design. Main effects were significant for both category, F(2, 
72.15) ¼ 7.35, p ¼ .001, and consensus, F(2, 55.11) ¼ 55.1, p < .001, but 
not their interaction, F(4, 66.5) ¼ 0.35, p ¼ .843. In follow-up contrasts, 
agreement was greater for facts, z ¼ 3.27, p ¼ .003, and morals, z ¼ 3.33, 
p ¼ .003, relative to preferences, whereas agreement did not differ be
tween facts and morals, z ¼ 0.01, p ¼ .999 (p values were corrected for 3 
comparisons; αfamilywise ¼ 0.05; single-step method; multcomp pack
age Hothorn et al., 2008). Differences among consensus sub-categories 
were consistent with our design: agreement was greater for 
positive-consensus statements, relative to no-consensus statements, z ¼
6.48, p < .001, and negative-consensus statements, z ¼ 10.26, p < .001, 
and agreement was greater for no-consensus statements relative to 
negative-consensus statements, z ¼ 6.80, p < .001. Although preferences 
elicited less agreement in general, there was no significant interaction 
between category and consensus, meaning that differences between 
consensus sub-categories were comparable across facts, morals, and 

preferences. 

2.2.2. Examining fact-/moral-/preference-like ratings across consensus 
sub-categories 

An initial, maximal mixed effects model failed to converge using 
restricted maximum likelihood (REML) estimation (after 10,000 
iterations):  

lmer(rating ~ 1 þ rating_type*category*consensus                                       

þ (1 þ rating_type*category*consensus | subject)                                        

þ (1 þ rating_type | stimuli))                                                                  

Given this, we simplified the model, removing consensus sub- 
categories from by-subject random effects. As fixed effects, the model 
included main effects of rating type (fact-/moral-/preference-like), 
category (fact/moral/preference), consensus (positive-/no-/negative- 
consensus), and all interactions. As random effects across subjects, the 
model included random intercepts, and random slopes for rating type, 
category, and their interaction. As random effects across stimuli, the 
model included random intercepts and random slopes for rating type.  

lmer(rating ~ 1 þ rating_type*category*consensus                                       

þ (1 þ rating_type*category | subject)                                                       

þ (1 þ rating_type | stimuli))                                                                  

Consistent with prior work (Ayars and Nichols, in press; Beebe, 2014; 
Goodwin and Darley, 2012; Heiphetz and Young, 2017), 
positive-consensus moral statements were perceived as more objective 
(fact-like) than other moral statements not supported by a social 
consensus. The model produced a significant 3-way interaction, F(8, 
63.0) ¼ 4.06, p < .001 (for condition means see Table S1 of the online 
supplemental materials). Contrasts compared consensus sub-categories 
within each category x rating-type grouping (p values corrected for 27 
comparisons; α familywise ¼ 0.05; single-step method). Among morals, 
positive-consensus statements were perceived as more fact-like than 
no-consensus, z ¼ 5.70, p < .001, and negative-consensus statements, z 
¼ 6.26, p < .001. Also, among facts, positive-consensus and 
no-consensus statements were perceived as more fact-like than 
negative-consensus statements: z ¼ 4.72, p < .001, and z ¼ 5.43, p <
.001, respectively (although these differences within facts did not 
replicate in Study 2; see section 3.2.1). Among preferences, there were 
no significant differences between consensus categories (Fig. 2b). 

2.3. Discussion 

Consistent with prior work (Ayars and Nichols, in press; Beebe, 2014; 
Goodwin and Darley, 2012; Heiphetz and Young, 2017), participants 
rated positive-consensus moral statements (i.e. moral statements sup
ported by a social consensus) as more fact-like (i.e. more objective) than 
no-consensus and negative-consensus moral statements. Study 2 exam
ined whether variability in moral objectivity was related to activity in 
the ToMN, given the hypothesis that regions in this network are asso
ciated with processing prediction error in socially relevant contexts 
(Koster-Hale and Saxe, 2013). According to this hypothesis, moral 
statements that are predictable on the basis of social consensus (i.e. 
statements rated as objective) should elicit less ToMN activity, and 
moral statements that run counter to the social consensus (i.e. state
ments rated as less objective) should elicit greater ToMN activity. 

3. Study 2 

Study 2 examined the relationship between the perceived objectivity 
of moral statements, and activity evoked in ToMN ROI, including right/ 
left temporoparietal junction (R/LTPJ), dorsal-/ventro-medial prefron
tal cortex (DMPFC/VMPFC), and precuneus (PC). We identified ToMN 
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ROIs using a functional localizer that has been frequently used in prior 
work (contrasting false beliefs with false photographs), allowing us to 
compare our present findings with prior work suggesting these same 
regions encode mental state information (Dodell-Feder et al., 2011). 
By-stimulus independent ratings of moral objectivity were collected and 
modeled in Study 1, and compared to by-stimulus estimates of ToMN 
activity that were collected and modeled in Study 2. In addition, other 
independent ratings of item features (e.g. the extent stimuli evoked 
mental state inferences) were collected, modeled, and explored as well. 

3.1. Method 

3.1.1. Participants 
Participants were a community sample, recruited through an online 

posting and paid $65. The final sample consisted of 25 right-handed 
adults (12 female, 12 male, 1 unspecified; Mage ¼ 27.0 years, SDage ¼

5.2 years; RangeAge ¼ 18–35 years). Two more participants were 
recruited but not analyzed due to excessive movement, identified during 
spatial preprocessing. Of these 25 participants, two completed only a 
subset of the scan session runs: one completed five of six runs due to 
experimenter error, and for the other a movement artifact rendered only 
the first three runs useable. We were unable to collect post-scan ratings 
for one of the 25 participants. The majority of our sample had either 

entered or completed college/university (maximum educational 
attainment of high school ¼ 4%; some college/university ¼ 28%; 
completed college/university ¼ 52%; completed graduate degree ¼
12%; no response ¼ 4%). The majority of the sample was Caucasian 
(White/Caucasian ¼ 56%; Black/African American ¼ 20%; Asian ¼
20%; no response ¼ 4%), and Non-Hispanic (Hispanic ¼ 4%; Non-His
panic ¼ 92%; no response ¼ 4%). All participants were native English 
speakers with no reported history of learning disabilities, previous 
psychiatric or neurological disorders, or a history of drug or alcohol 
abuse. 

3.1.2. Procedure 
Participants completed the study in a single session. Twenty partic

ipated at Harvard University’s Center for Brain Science Neuroimaging 
Facility, and five at the Massachusetts Institute of Technology’s Marti
nos Imaging Center. Scanning parameters and equipment were identical 
between sites (see 3.1.4). In the scanner, participants read statements 
and rated their agreement with each (ratings were consistent with 
consensus subcategories; see Table S2). Statements were shown across 
six runs (12 per run; items were randomized; conditions were counter
balanced to appear equally in each run). Participants read each state
ment (6 s), rated their agreement (4 s), and waited during fixation (12 s). 
Agreement was provided with a button box (1–4; “Strongly 

Fig. 2. Study 1 metaethical judgments. Participants rated each scenario on the extent that it was fact-like, moral-like, and preference-like (1–7; “not at all” – 
“completely”). (a) Collapsing across consensus subcategories, ratings were consistent with our a priori categories: facts were largely fact-like (left), preferences were 
largely preference-like (right), and morals were largely moral-like (center). Moral statements were also perceived as largely preference-like (a pattern explored 
further in Theriault et al., 2017). (b) Across consensus subcategories, positive-consensus morals were perceived as more fact-like than no-consensus or 
negative-consensus morals (center; blue). Note that variance across items was markedly greater for moral statements than for facts or preferences (dots represent item 
averages for each rating; 72 stimuli x 3 ratings). Error bars represent 95% confidence interval. For condition means, see Table S1 of the online supplemental ma
terials. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Agree”–“Strongly Disagree”). A thumb press indicated “Don’t Know”, 
which was coded as an empty cell. This option was provided to avoid 
confusion, particularly for no-consensus facts where the answer was 
generally unknown (across our complete sample, 68.5% of “don’t know” 
responses were for no-consensus facts, followed by 7.7% for no- 
consensus preferences). Stimuli were presented in white text on a 
black background using a projector, viewable through a mirror mounted 
on the head coil. The experimental protocol was run on an Apple Mac
book Pro using Matlab 7.7.0 (R2008b) with Psychophysics Toolbox. 
Each experimental run was 4 min 52 s long, totaling 29 min 12 s across 
six runs. The in-scanner experiment was preceded by a structural scan (6 
min 3 s) and a functional localizer (two 4 min 46 s runs; Dodell-Feder 
et al., 2011; see 3.1.5). The total scan time was 68 min 8 s due to a 
second study not reported here involving responses to moral dilemmas 
(29 min 12 s); runs for both studies were interleaved, so that stimuli in 
the present work were equally likely to appear early or late in the ses
sion, across participants. Post-scan, participants rated all statements (i.e. 
on the extent to which each was fact-/moral-/preference-like) on an 
Apple Macbook Pro and completed a brief demographics questionnaire. 

3.1.3. Stimuli and measures 
Stimuli were identical to those described in Study 1 (see Appendix 

A). Ratings of additional item features were collected in separate online 
samples. These included questions used in a prior item analysis of the 
ToMN (Dodell-Feder et al., 2011) as well as measures of arousal and 
valence (Kron et al., 2013; see Appendix B). In these separate online 
samples, participants were asked one of the following questions: Mental 
Imagery (n ¼ 46; “To what extent did you picture or imagine what the 
statement described as you read?”; 1–7–; “Very Little”–“Very much”), 
Person Present (n ¼ 48; “Does this statement mention people or a per
son?”; 0–1; “No”–“Yes”), Valence (n ¼ 42; the difference between 8-point 
positive and negative unipolar scales; Kron et al., 2013), Arousal (n ¼ 42; 
the sum of both 8-point positive and negative unipolar scales; Kron et al., 
2013); and Mental States (n ¼ 48; “To what extent did this statement 
make you think about someone’s experiences, thoughts, beliefs, and/or 
desires?”; 1–7; “Very Little”–“Very Much”). Given that prior work has 
established the sensitivity of the ToMN to mental state information 
(Saxe and Kanwisher, 2003), and given that this Mental States measure 
was ambiguous with respect to whose mental states should be consid
ered (either your own, or the mental states of others), we asked an 
additional sample of participants two more specific questions: Mental 
States (of Others), (n ¼ 44; “To what extent did this statement make you 
think about the experiences, thoughts, beliefs, and/or desires OF OTHER 
PEOPLE?; 1–7; “Very Little”–“Very Much”) and Mental States (of Self), (n 
¼ 46; “To what extent did this statement make you think about YOUR 
OWN experiences, thoughts, beliefs, and/or desires?”; 1–7; “Very Lit
tle”–“Very Much”). 

To ensure that effects were not driven by semantic/syntactic differ
ences across stimuli, several item characteristics were collected using 
Coh-Metrix 3.0 (Graesser et al., 2004; McNamara et al., 2014). These 
included features such as word length, reading ease, noun concreteness, 
familiarity, and imageability, among others (see Appendix B). 

3.1.4. fMRI imaging and analysis 
Scanning was performed using a 3.0 T S Tim Trio MRI scanner 

(Siemens Medical Solutions, Erlangen, Germany) and a 12-channel head 
coil at the Center for Brain Science Neuroimaging Facility at Harvard 
University and at the Massachusetts Institute of Technology’s Martinos 
Imaging Center. Thirty-six slices with 3mm isotropic voxels, with a 
0.54mm gap between slices to allow for full brain coverage, were 
collected using gradient-echo planar imaging (TR ¼ 2000 ms, TE ¼ 30 
ms, flip angle ¼ 90�, FOV ¼ 216 � 216 mm; interleaved acquisition). 
Anatomical data were collected with T1-weighted multi-echo magneti
zation prepared rapid acquisition gradient echo image (MEMPRAGE) 
sequences (TR ¼ 2530 ms, TE ¼ 1.64 ms, FA ¼ 7�, 1mm isotropic voxels, 
0.5mm gap between slices, FOV ¼ 256 � 256 mm). Data processing and 

analysis were performed using SPM8 (http://www.fil.ion.ucl.ac. 
uk/spm) and in-house Matlab modeling scripts (https://github.com/l 
ypsychlab/younglab_scripts). The data were motion-corrected, real
igned, normalized onto a common brain space (Montreal Neurological 
Institute, MNI), spatially smoothed using a Gaussian filter (full-width 
half-maximum ¼ 5 mm kernel), and high-pass filtered (128 Hz). 

3.1.5. ToMN localizer task 
An independent functional localizer task identified ToMN ROIs 

(Dodell-Feder et al., 2011). The task consisted of ten stories about 
mental states (false-belief) and ten about physical representations 
(false-photograph), presented across two runs. Stories were matched in 
complexity across conditions; see http://saxelab.mit.edu/superloc.php 
for the complete set. Each story appeared (10 s) and was followed by 
a statement about it, rated true or false (4 s). Typically, to increase 
power, this contrast is used to select ROIs individually for each partic
ipant. However, this approach also means that ROI coordinates cannot 
be reported in normalized space. Alternatively, we could select ROIs 
using the peak voxels of a whole brain random effects contrast (belief >
photograph) across all participants. Both approaches returned the same 
pattern of results (with respect to the significance of relationships be
tween ToMN activity and metaethical judgments), and so in the interest 
of providing replicable coordinates we used the latter approach, 
defining each ROI as a 9mm-radius sphere around the peak voxel (for 
coordinates see Table S3 of the online supplemental materials). The 
localizer contrast was thresholded at p < .001 (Woo et al., 2014), and k 
¼ 10 (to remain consistent with thresholds used in prior work; 
Dodell-Feder et al., 2011; see Table S3 for k values, and additional 
clusters identified by the contrast). 

3.1.6. ROI analysis 
BOLD activity for each functional ROI was estimated using a boxcar 

regressor, beginning with the appearance of the text, and ending after 
the agreement rating (10 s total). The time-window was adjusted for 
hemodynamic lag so that data were collected at 4–14 s from onset 
(Dodell-Feder et al., 2011). To model activity in each ROI, we trans
formed BOLD activity at each time point of the experimental task into 
percent signal change (PSC ¼ raw BOLD magnitude for (condition – 
fixation)/fixation), centering each run at mean PSC. 

3.1.7. Whole brain correlation analysis 
Whole-brain analyses were performed by first estimating beta maps 

for each item and then correlating beta maps with estimates of meta
ethical judgments (derived from Study 1, see 3.1.8). For each subject, 
three models correlated beta estimates with fact-like, moral-like, and 
preference-like ratings. Subject-level beta maps of each correlation were 
entered into separate second-level analyses across subjects. Each second- 
level contrast was cluster-corrected by permutation (5000 samples) to 
achieve a familywise error rate of α ¼ 0.05, thresholding voxels at p <
.001 (as recommended by Woo et al., 2014). Permutation tests were 
performed using SnPM 13 (http://warwick.ac.uk/snpm; Nichols and 
Holmes, 2002). 

3.1.8. Statistical methods 
As in Study 1, mixed effects analyses were used to model behavioral 

responses and PSC. Model specification and simplification is described 
below (3.2.2). For ToMN ROIs, BLUPs (best linear unbiased predictors) 
were extracted from the fitted models and compared to behavioral 
BLUPs extracted from the online sample in Study 1 (see Table S4 of the 
online supplemental materials) and additional online samples (see sec
tion 3.1.3, and Appendix A). The advantages of mixed effects models are 
described in detail in section 2.1.3. We began all modeling by including 
all random effects (Barr et al., 2013), but if this model failed to converge 
using REML estimation, then correlations between random effects were 
temporarily removed, the model was inspected, and variance compo
nents with zero unique variance were removed (Bates et al., 2015). Any 
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exceptions to this procedure are noted in the results section, and full 
models are reported in the text in formula syntax. 

3.1.9. Data and software sharing 
De-identified ROI timecourse data and code to reproduce all analyses 

and figures are available at https://osf.io/cx4dp/, as well as raw fMRI 
data and by-stimulus item estimates in standardized BIDS format (Gor
golewski et al., 2016). Whole-brain unthresholded T maps, corre
sponding to analyses in Section 3.2.5 and Fig. 4, are available at https 
://neurovault.org/collections/ZZMRPKDV/. 

3.2. Results 

3.2.1. Replicating study 1 behavioral results 
First, we modeled metaethical judgments in our Study 2 sample to 

ensure that the patterns were consistent with those observed in Study 1. 
The maximal mixed effects model used to model behavioral data in 
Study 1 (2.2.2) did not provide a convergent solution using REML esti
mation in the Study 2 behavioral data, most likely because of Study 2’s 
smaller sample of participants. There were no parameters which could 
clearly be dropped (i.e. parameters with zero unique variance), so by- 
stimulus random effects were dropped instead, as we simply wanted 
to confirm that ratings were similar to those observed in Study 1. The 
resulting model included, as fixed effects, main effects of rating type 
(fact-/moral-/preference-like), category (fact/moral/preference), 
consensus (positive-/no-/negative-consensus), and all interactions. As 
random effects across subjects, the model included random intercepts, 
and random slopes for rating type, category, and their interaction.  

lmer(rating ~ 1 þ rating_type*category*consensus                                       

þ (1 þ rating_type*category | subject)                                                      

We performed contrasts for all comparisons of interest (p values 
corrected for 27 comparisons; α familywise ¼ 0.05; single-step method). As 
in Study 1, participants rated positive-consensus morals as more fact- 
like than both no-consensus morals, z ¼ 6.82, p < .001, and negative- 
consensus morals, z ¼ 7.92, p < .001, and no significant difference 
emerged between fact-like ratings for no-consensus and negative- 
consensus morals, z ¼ 2.33, p ¼ .378. Unlike in Study 1, there was no 
significant difference in fact-like ratings within facts across consensus 
sub-categories (for condition means see Table S5 of the online supple
mental materials). 

3.2.2. Model fitting and by-stimulus estimates of ToMN activity 
Initially, a maximal mixed effects model, predicting PSC, was fit 

across all functional ROIs:  

lmer(PSC ~ 1 þ ROI*category                                                                 

þ (1 þ ROI*category | subject)                                                                

þ (1 þ ROI | stimuli)                                                                             

However, this maximal model failed to converge using REML and 
had to be simplified (see section 3.1.8). The final simplified model 
included, as fixed effects, main effects of ROI (DMPFC/VMPFC/PC/ 
RTPJ/LTPJ), category (fact/moral/preference), and all interactions. As 
random effects across subjects, the model included random intercepts, 
and random slopes for ROI, category, and the interactions of VMPFC and 
LTPJ with the moral category. As random effects across stimuli, the 
model included random intercepts, and random slopes for VMPFC.  

lmer(PSC ~ 1 þ ROI*category                                                                 

þ (1 þ ROI þ category þ moral*VMPFC þ moral*LTPJ | subject)               

þ (1 þ VMPFC | stimuli)                                                                       

These simplifications from the maximal model are informative with 

respect to relations among ROIs (for model details, see Table S6 of the 
online supplemental materials). For by-stimulus random effects, we 
observed high correlations between DMPFC (i.e. intercept), PC, RTPJ, 
and LTPJ. These correlations preclude calculating unique variance terms 
for each ROI, but, at the same time, they suggest that the response of 
these regions cannot be distinguished within our set of stimuli. Thus, the 
mixed effects analysis provided a data driven rationale for a more con
servative analysis, treating these regions as a network and avoiding 
overfitting the data to every ROI. At the same time, as by-stimulus 
variance for VMPFC can be estimated separately, the data licensed 
separate analyses for this region. As all analyses below concern the by- 
stimulus estimates of ToMN activity, by-stimulus estimates of DMPFC, 
PC, RTPJ, and LTPJ are averaged and collectively referred to as the 
ToMN. Given this, ROI interactions reported below examine differences 
between the ToMN, and VMPFC. 

3.2.3. Among moral statements, ToMN activity is positively associated with 
preference-like ratings, and negatively associated with fact-like/moral-like 
ratings 

Our core question was whether ToMN activity was related to by- 
stimulus ratings of moral objectivity. By-stimulus estimates of meta
ethical ratings (fact-like, moral-like, and preference-like ratings) were 
extracted from Study 1 (section 2.2.2), and, separately, by-stimulus es
timates of ToMN activity (PSC; centered and normalized) were extracted 
from the Study 2 fMRI data (section 3.2.2). A linear model predicted by- 
stimulus metaethical judgments on the basis of ToMN activity (for model 
details, see Table S7 of the online supplemental materials), including 
main effects and interactions of PSC (estimated from the model in 3.2.2), 
category (fact/moral/preference), and rating type (fact-/moral-/pref
erence-like), as well as interactions between these terms and ROI 
(ToMN/VMPFC).  

lm(rating ~ 1 þ PSC*category*rating_type þ

ROI:PSC þ ROI:PSC:category þ ROI:PSC:rating_type þ ROI:PSC:rat
ing_type:category)                                                                                 

The association between metaethical judgments and ToMN activity 
differed between categories (facts, morals, and preferences): morals 
showed a distinct pattern of association. We observed a 4-way interac
tion,3 F(4, 405) ¼ 5.73, p < .001 between PSC, category, rating-type, and 
ROI. Follow-up ANOVAs identified significant 4-way interactions be
tween morals and facts, F(2, 270) ¼ 7.42, p < .001, and between morals 
and preferences, F(2, 270) ¼ 6.64, p ¼ .002, but not between preferences 
and facts, F(2, 270) ¼ 0.01, p ¼ .986. 

Within morals, ToMN activity was related to metaethical judgments: 
increased ToMN activity was associated with increases in preference- 
like ratings, and decreases in both fact-like and moral-like ratings. 
Following up a 3-way interaction (within morals) between PSC, ROI, 
and rating type F(2, 135) ¼ 6.03, p ¼ .003, further 3-way interactions 
distinguishing between rating types demonstrated distinctions between 
preference-like and fact-like ratings, F(1, 90) ¼ 13.8, p < .001, between 
preference-like and moral-like ratings, F(1, 90) ¼ 5.55, p ¼ .022, but not 
between fact-like and moral-like ratings, F(1, 90) ¼ 0.81, p ¼ .371. Thus, 
among moral statements, BOLD activity in ToMN and VMPFC shows one 
relationship with preference-like ratings, and another for moral-like and 
fact-like ratings. These relationships also differed slightly between ROIs, 

3 A sensitivity analysis (estimated by simulation using the simr package; 
Green and MacLeod, 2016) indicated that this 4-way interaction between PSC, 
category, rating-type, and ROI could detect a minimum effect size 35% below 
the effect size observed in the present work, while retaining ~80% power 
(Arend and Sch€afer, 2019; Bloom, 1995). All fixed effects in the model were 
multiplied by .65, and Monte Carlo simulation was used to compare the model 
above to an alternative omitting the 4-way interaction, power ¼ 83.40%, 95% 
CI ¼ [80.95%, 85.66%], 1000 simulations. 
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as 2-way interactions between PSC and ROI were significant among 
preference-like ratings, F(1, 45) ¼ 4.57, p ¼ .038, and fact-/moral-like 
ratings, F(1, 92) ¼ 8.80, p ¼ .004. 

Contrasts tested the strength of each relationship, among morals, 
between ToMN/VMPFC activity and metaethical judgment. ToMN ac
tivity was negatively related to fact-/moral-like ratings, B ¼ � 1.01, β ¼
� 0.46, t(140) ¼ 4.32, p < .001, and positively related to preference-like 
ratings, B ¼ 0.94, β ¼ 0.43, t(140) ¼ 2.85, p ¼ .020. VMPFC activity was 
also negatively related to fact-/moral-like ratings, B ¼ � 0.28, β ¼ � 0.13, 
t(140) ¼ 3.18, p ¼ .007, and showed a marginal positive association with 
preference-like ratings, B ¼ 0.31, β ¼ 0.14, t(140) ¼ 2.48, p ¼ .055 (p 
values corrected for 4 comparisons; α familywise ¼ 0.05; single-step 
method). Thus, among moral statements, ToMN activity was nega
tively related to fact-/moral-like ratings, and positively related to 
preference-like ratings, with both relationships present, but weaker in 
VMPFC (Fig. 3a).4 

Among both facts and preferences, ToMN activity was not related to 
metaethical judgments. Within facts, averaging across ToMN and 
VMPFC, PSC did not interact with rating-type, F(2, 135) ¼ 0.23, p ¼
.792, and PSC showed no significant main effect, F(1, 135) ¼ 0.01, p ¼
.991. Likewise, within preferences, averaging across ToMN and VMPFC, 
PSC did not interact with rating type, F(2, 135) ¼ 0.61, p ¼ .550, and 
PSC showed no significant main effect, F(1, 135) ¼ 2.60, p ¼ .109 
(Fig. 3b). 

3.2.4. The ToMN–metaethical judgment association remains significant 
after controlling for reaction time and semantic/syntactic features of stimuli 

The identified relationship between metaethical judgments and 
BOLD activity could be driven by variance on some dimension outside of 
experimental interest, e.g. reaction time, or semantic/syntactic features 
of the stimuli. Along with reaction time, 13 semantic/syntactic features 
were collected for each stimulus (e.g. reading ease, noun concreteness; 
Graesser et al., 2004; McNamara et al., 2014; see Appendix B), and 
added as fixed effects to the model of ToMN activity identified in 3.2.2 
(along with their interactions with ROI and category). Beginning with a 
maximal model (omitting correlations among random effects), 
non-significant confounds were dropped from the model step-wise. The 
final model controlled for stimulus differences in concreteness, words 
before the main verb, and familiarity (but notably, not reaction time, 
which was not related to ToMN activity; for model details and full 
analysis, see Table S9 of the supplemental online materials). By-stimulus 
estimates of ROI activity were extracted from the final model, and the 
analyses in 3.2.3 were repeated. The results were consistent with the 
initial findings, although the interaction between ToMN and VMPFC was 
no longer significant. Among moral statements, positive ToMN activity 
was associated with increased preference-like ratings, B ¼ 1.02, β ¼
0.25, t(70) ¼ 2.81, p ¼ .013, and decreased fact-like/moral-like ratings, 
B ¼ � 0.97, β ¼ � 0.23, t(70) ¼ 3.79, p < .001 (p values corrected for 2 
comparisons; α familywise ¼ 0.05; single-step method). These relationships 
did not change if reaction time, and its interactions with category and 
ROI, were reintroduced to the behavioral model. 

3.2.5. Whole brain analysis: bilateral TPJ activity is negatively associated 
with fact-like (objectivity) ratings 

A whole brain random effects analysis of moral statements provided 
context for our analysis of ToMN ROIs, showing that by-stimulus BOLD 
activity was negatively related to fact-like ratings, and positively related 
to preference-like ratings in overlapping regions of bilateral TPJ (Fig. 4). 
We performed three whole brain correlation analyses, testing the rela
tionship between average by-stimulus PSC (modeled in Study 2) and by- 
stimulus behavioral estimates of fact-like, moral-like, and preference- 
like ratings (modeled in Study 1). Preference-like ratings were posi
tively correlated with activity in bilateral TPJ (peak MNI coordinates: 
right [54, � 60, 34]; left [-36, � 70, 48]), and fact-like ratings were 
negatively correlated in overlapping regions of bilateral RTPJ (peak MNI 
coordinates: right [44, � 68, 46]; left [-44, � 62, 48]). Peak activation for 
associations with fact-like ratings were slightly dorsal to the functionally 
defined ROI positions [peak RTPJlocalizer; [52, � 60, 24]; peak LTPJlo

calizer [-56, � 56, 28]; see Table S3 in the online supplemental materials); 
however, their overlap was particularly noticeable in RTPJ (Fig. 4). 
Surprisingly, fact-like ratings were negatively correlated with activity in 
the superior and bilateral middle frontal gyri, and positively correlated 
with activity in the parietooccipital sulcus. No voxels showed negative 
associations with preference-like ratings, and no voxels correlated 
(positively or negatively) with moral-like ratings. Thus, fact-like ratings 
are negatively correlated with activity in several regions, but correla
tions between BOLD activity and both fact-like and preference-like rat
ings were present in bilateral TPJ. 

3.2.6. Among moral statements, ToMN activity is not associated with the 
extent of mental state information 

Given that we identified an association, across stimuli, between 
ToMN activity and judgments of objectivity, we also examined whether 
a by-stimulus relationship exists between ToMN activity and the extent 
that a statement is judged to contain information about mental states. 
Unlike metaethical judgments—where low variability among facts and 
preferences precluded comparisons across facts, morals, and preferences 
(Fig. 2b)—comparisons across content categories were possible for rat
ings of mental state inference and other item features. In total, seven 
additional item features were analyzed in an exploratory analysis: (a) 
agreement (estimated using Study 1 data); (b) ratings of the presence of 
mental states (either generally, with reference to one’s own mental states, 
or with reference to the mental states of others); (c) ratings of evoked 
mental imagery; (d) binary judgments of whether a person was present 
in the statement; (e) ratings of valence; (f) and ratings of arousal. Each 
rating was fit with maximal mixed effects model, and behavioral by- 
stimulus estimates were extracted and compared with by-stimulus esti
mates of ToMN activity (see Table S10 of the online supplemental ma
terials for model details and ANOVA details; see also Fig. S2 for a 
correlation matrix, displaying linear relationships among all by-stimulus 
estimates). 

Agreement was negatively related to ToMN activity among moral 
statements, but showed a marginally positively relationship among 
preferences (Fig. 5a). Correcting for three comparisons (α familywise ¼

0.05; single-step method): among facts, the agreement–ToMN relation
ship was non-significant, B ¼ 0.02, β ¼ 0.01, t(69) ¼ 0.04, p ¼ 1.00; 
among preferences, the agreement–ToMN relationship was positive and 
marginally significant, B ¼ 1.01, β ¼ 0.53, t(69) ¼ 2.30, p ¼ .072; and 
among morals, the agreement–ToMN relationship was negative and 
significant, B ¼ � 1.46, β ¼ � 0.77, t(69) ¼ 2.57, p ¼ .037. That high 
agreement moral statements elicited less ToMN activity is consistent 
with our behavioral findings, where fact-like moral statements also 
elicited less ToMN activity (Fig. 3), and positive-consensus (high 
agreement) moral statements were perceived as more fact-like (Fig. 2b). 

Mental state information (either general, self-oriented, or other- 
oriented; see 3.1.3), was only positively associated with ToMN activity 
among preferences, and no significant association was observed among 
facts or morals (Fig. 5b–d). Among preferences, ToMN activity was 

4 As in footnote 3, a sensitivity analysis (Arend and Sch€afer, 2019; Bloom, 
1995) was conducted using simr (Green and MacLeod, 2016), to identify the 
minimum effect size we could detect at ~80% power. The negative relationship 
between ToMN activity and fact-/moral-like ratings could be reduced by 35% 
from our observed effect, while attaining 80.80% power, 95%CI ¼ [78.22%, 
83.20%], 1000 stimulations. The positive relationship between ToMN activity 
and preference-like ratings could be reduced by 40% from our observed effect, 
while attaining 82.80% power, 95%CI ¼ [80.32%, 85.09%], 1000 stimulations. 
Associations with VMPFC activity were less well-powered, and should be 
considered with less confidence. The association between VMPFC activity and 
fact-/moral-like ratings could only be reduced 10% while attaining 79.50% 
power, 95%CI ¼ [76.86%, 81.96%], 1000 stimulations, and the association 
between VMPFC activity and preference-like ratings could only be reduced 15% 
while attaining 81.00% power 95%CI ¼ [78.43%, 83.39%], 1000 stimulations. 
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positively associated with general mental state information, B ¼ 0.37, β 
¼ 0.31, t(66) ¼ 3.39, p ¼ .004, self-oriented mental state information, B 
¼ 0.51, β ¼ 0.52, t(66) ¼ 2.48, p ¼ .047, and other-oriented mental state 
information, B ¼ 0.47, β ¼ 0.47, t(66) ¼ 2.77, p ¼ .022. No significant 
association was observed among facts or preferences on any measure 
(Fig. 5b–d; Table S10). Thus, we find some limited support that ToMN 
activity is sensitive to mental state information among preferences, but 
we also find that the relationship does not generalize to morals. 

Of the remaining item features, only the presence of a person was 
positively associated with ToMN activity (Fig. 5e): across all categories, 
if, on average, our online sample agreed that a statement contained a 
person, then increased ToMN activity was observed, B ¼ 1.40, β ¼ 0.35, t 
(68) ¼ 2.28, p ¼ .026. Other measures were not significantly related to 
ToMN activity (Fig. 5f–h; for analyses, see Table S10 of the online 
supplemental materials). 

4. General discussion 

In the present work, we examined the relationship between by- 
stimulus judgments of moral objectivity/subjectivity (i.e. metaethical 
judgments) and activity in the ToMN network. We observed that moral 
statements that were judged as more objective (i.e. more fact-like and 
less preference-like) elicited less ToMN activity, and moral statements 

judged as more subjective (i.e. less fact-like and more preference-like) 
elicited greater ToMN activity. This finding was confirmed in both 
ROI analyses (Fig. 3; using an established functional localizer; Dodell-
Feder et al., 2011) and a whole brain analysis (Fig. 4; for unthresholded 
T-maps, see https://neurovault.org/collections/ZZMRPKDV/). ROI an
alyses were robust to controls for reaction time and semantic/syntactic 
features of the stimuli (section 3.2.4). The whole brain analysis impli
cated bilateral TPJ as locations in which the observed associations were 
relatively strong compared to other ToMN ROIs, which is consistent with 
the emphasis of prior work on TPJ as particularly critical region for 
processing social or high-level prediction error (e.g. Geng and Vossel, 
2013; Schuwerk et al., 2017; but, for a brief discussion of MPFC in a 
predictive context, see Koster-Hale and Saxe, 2013). In addition, we 
explored relationships between ToMN activity and additional item fea
tures as rated by online samples (Fig. 5), finding that ToMN activity was 
negatively associated with agreement among morals, positively associ
ated with mental state inferences among preferences, and positively 
associated with the presence of a person among morals, facts, and 
preferences. To our knowledge, ours is the first study to identify a 
relationship between by-stimulus variance in ToMN activity and 

Fig. 3. Behavioral–BOLD relationships. By-stimulus estimates of metaethical judgments were extracted from Study 1 and compared with by-stimulus estimates of 
PSC (percent signal change), extracted from a model of all ROIs in Study 2. ToMN includes averaged estimates for DMPFC, PC, RTPJ, and LTPJ (all by-stimulus 
random effects were perfectly correlated). (a) Within moral statements, PSC for ToMN was positively related to preference-like ratings, and negatively related to 
fact-/moral-like ratings. These relationships were present, but weakened in VMPFC. (b) Within facts and preferences, there was no relationship with PSC. Shaded 
areas represent 95% confidence intervals. We also performed a supplemental analysis using agreement and metaethical judgments collected within participants, 
which showed a pattern of results across ROIs consistent with these results (Fig. S1). 
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features of individual stimuli (prior work has tried and failed to identify 
significant by-stimulus relationships within the ToMN; Dodell-Feder 
et al., 2011).5 Our study is also one of only a few to leverage pre-existing 
social expectations in the experimental context (e.g. Cloutier et al., 
2011; Park and Young, 2020), and, to our knowledge, the only one to do 
this while examining by-stimulus variability. Below, we discuss how 
these results might be integrated into a predictive framework (e.g. 
Koster-Hale and Saxe, 2013), how they may facilitate new approaches to 
understanding the social relevance of moral beliefs, and how our 
methodology for item analysis may be of use in future work. 

4.1. Integrating predictive processing accounts and functional associations 
with ToMN activity 

Our core aim was to help address what underlying process is sup
ported by ToMN activity, given the heterogeneity of the tasks and 
stimuli that activate it. As outlined in our introduction, a variety of so
cial tasks activate the ToMN— e.g. reading stories, watching social an
imations, taking perspectives, making strategic decisions, inferring 

traits, forming impressions, reading moral statements, and experiencing 
shared narratives (for review, see Amodio and Frith, 2006; Schurz et al., 
2014, 2017; Van Overwalle, 2009). However, the functional scope of 
these cortical regions broadens even further when cortex in close 
proximity to the ToMN is considered. For instance, ToMN regions 
partially overlap with the default mode network (Buckner, 2012; Mars 
et al., 2012; Schurz et al., 2017), a network thought to subserve the 
formation of a predictive model of the external environment (Barrett, 
2017; Hassabis and Maguire, 2009). Further, although ToMN regions 
can be spatially distinguished by peak activation from nearby cortical 
regions that are responsive to non-social tasks (e.g. attentional reor
ienting; Scholz et al., 2009; Young et al., 2010a, 2010b), it remains the 
case that ToMN regions are in close spatial proximity to regions acti
vated by a variety of other abstract non-social tasks (e.g. the TPJ in 
particular, by episodic memory encoding/retrieval and language; for 
review, see Cabeza et al., 2012; Carter and Huettel, 2013), and by sen
sory events occurring over long temporal scales (recruiting ToMN re
gions more generally; Baldassano et al., 2017; Richardson and Saxe, 
2019). To adequately describe the computational processes underlying 
ToMN activity, a computational account should accommodate the 
functional heterogeneity in these areas. 

In one sense, then, the contribution of the present work might seem 
small. ToMN activity has been previously characterized by a list of as
sociations, and we added one more: an association between ToMN ac
tivity and metaethical judgment, where subjective morals elicited more 
ToMN activity, and objective morals elicited less. However, in another 
sense, the present work contributes to more fundamental debates about 

Fig. 4. Whole brain behavioral–BOLD correlations, within moral statements. In three separate models, BOLD estimates were correlated with fact-like, moral-like, and 
preference-like ratings, extracted from Study 1. ToMN ROIs are pictured for reference. Fact-like ratings were negatively related to activity in bilateral TPJ, over
lapping with regions showing positive correlations with preference-like ratings. These areas of overlap included areas within the defined TPJ ROIs in both hemi
spheres. Fact-like ratings were also negatively related to BOLD estimates in superior and middle frontal gyri, and positively related in parietooccipital sulcus. For peak 
coordinates see Table S8 of the online supplemental materials. For unthresholded T maps, see https://neurovault.org/collections/ZZMRPKDV/. 

5 Dodell-Feder et al. (2011) did identify an association between activity in 
right posterior temporal parietal sulcus (a region not typically considered part 
of the ToMN) and mental state information (the general measure included in 
our study; Fig. 5b). The effect size was comparable (β ¼ 0.680), although 
slightly higher than the effects observed in the present work (e.g. mental state 
information in general, β ¼ 0.31, information about one’s own mental states, β 
¼ 0.47, and information about others’ mental states, β ¼ 0.51). 
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what computational process the ToMN implements. That is, the present 
work identified an association that is more plausibly incorporated into 
unifying predictive accounts of ToMN activity (e.g. Koster-Hale and 
Saxe, 2013), as opposed to an account based around functional modules 
(Baron-Cohen, 1995; Cosmides and Tooby, 1992; Scholl and Leslie, 
2001)—a strong version of which might use the association we have 
identified to suggest that the brain contains a spatially constrained 
module for metaethical judgment, as prior work has similarly argued for 
the existence of functionally localized modules for language, number, 
and memory retrieval, among others (e.g. Nelson et al., 2012). Perhaps 
an argument for such a metaethical module could be advanced; but in 
our opinion, given that metaethical judgment represents judgments 
about an abstract feature of a moral judgment (which itself, is not clearly 
localized; Young and Dungan, 2012), interpreting our findings in this 
way might push against the limits of plausibility. 

Likewise, because we did identify an association between ToMN 
activity and agreement within morals (Fig. 5a), and because agreement 
was strongly correlated with fact-like, moral-like, and preference-like 

ratings among morals (Fig. S2), one could argue that our study is bet
ter understood as identifying a relationship between agreement with 
morals and ToMN activity. Within the present design we cannot rule out 
this confound, but we want to reemphasize that this interpretation 
would move us toward a theoretical framework that embraces func
tional specificity and brings the heterogeneity of observed effects into 
conflict. That is, it seems more probable that the distinct and occa
sionally opposite sets of associations we observed within the ToMN (e.g. 
a positive association with agreement among preferences, and a nega
tive association with agreement among morals) all fall under the um
brella of some more general function that is consistently associated with 
ToMN activity but varies in its implementation across social contexts. It 
is for this reason that we favor a predictive processing account to explain 
our results. Future work might use a design or stimuli set that uncon
founds agreement and predictability, for example, by presenting a 
conservative living in a liberal city with a widely shared liberal moral 
belief (e.g. pro-choice beliefs) and a conservative moral belief held by a 
minority (e.g. pro-life beliefs). In this case, we would predict relatively 

Fig. 5. Exploratory behavioral–BOLD relationships. By-stimulus behavioral estimates of agreement were extracted from Study 1, and from independent online 
studies for remaining measures. By-stimulus estimates of ToMN activity were extracted from Study 2 (3.2.2), and ToMN and VMPFC estimates were averaged for the 
figures above, given that no interactions with ROI were observed. (a) Agreement was negatively associated with ToMN activity among moral statements. Mental state 
inferences were positively associated with ToMN activity among preferences, but not among facts or morals, for each of the three ways the questions were asked: (b) 
general mental state information, (c) self-oriented mental state information, and (d) other-oriented mental state information. (e) The presence of a person in the 
statement was positively associated with ToMN activity among facts, morals, and preferences. (f–h) ToMN activity was not significantly associated with mental 
imagery, arousal, or valence. Shaded areas represent 95% confidence intervals. The full correlation matrix comparing all measures is available in Fig. S2, in the online 
supplemental materials. 
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less ToMN activity in a pro-life participant reading the widely shared 
(but personally disagreeable) pro-choice belief, compared to the mi
nority (but personally agreeable) pro-life belief. 

To this end, rather than concluding that subregions within the ToMN 
(or surrounding the TPJ) each implement a distinct functional compu
tation (i.e. a “fractionated” modular perspective; see Schuwerk et al., 
2017), some have put forward more generalized accounts of ToMN ac
tivity, hypothesizing that regions within it subserve more general and 
fundamental aspects of information processing (Cabeza et al., 2012; 
Carter and Huettel, 2013; Decety and Lamm, 2007; Geng and Vossel, 
2013; Lee and McCarthy, 2016; Schuwerk et al., 2017), such as updating 
context-dependent predictions when those predictions are violated 
(Geng and Vossel, 2013).6 These accounts dovetail nicely with predic
tive processing accounts reviewed in the introduction (e.g. Barrett and 
Simmons, 2015; Chanes and Barrett, 2016; A. Clark, 2013, 2015; Den�eve 
and Jardri, 2016; Friston et al., 2016, 2017; Hohwy, 2013; Hutchinson 
and Barrett, 2019; Joiner et al., 2017; Koster-Hale and Saxe, 2013, 2013; 
Rao and Ballard, 1999; Shadmehr et al., 2010; Spratling, 2017; Van de 
Cruys et al., 2014), where the brain is thought to act as a “hierarchical 
prediction machine” (A. Clark, 2013), predicting and filtering incoming 
sensory signals and their multimodal compressions throughout the 
cortical hierarchy. 

Note that this explanation does not dispute the finding that social 
information reliably elicits activity in spatially constrained cortical re
gions (Dodell-Feder et al., 2011; Saxe and Kanwisher, 2003; Saxe and 
Powell, 2006; Saxe and Wexler, 2005; Scholz et al., 2009; Young et al., 
2010a, 2010b). Indeed, we observed just this, finding positive associa
tions between ToMN activity and the presence of a person within facts, 
morals, and preferences, and a positive association between ToMN ac
tivity and multiple measures of mental state information within pref
erences (Fig. 5b–d). We also observed a marginal positive association 
between ToMN activity and agreement within preferences (the opposite 
of the pattern observed among morals; Fig. 5a), but this most likely 
stems from the confounding of agreement and measures of mental state 
information within our sample of preferences (Fig. S2). 

A predictive account, however, unlike a modular perspective, sug
gests that socially-sensitive brain regions are the particular point of 
collision between bottom-up multimodal compressions of sensory sig
nals (e.g. the sights, sounds, etc., that collectively form the percept of a 
person) and top-down predictions about latent causes (i.e. the latent 
mental states that are predicted to produce observed patterns of 
behavior, movement, etc.). On this predictive account, then, ToMN ac
tivity is thought to reflect the updating of predictions about high-level 
compressions of sensory information (Bach and Schenke, 2017; 
Hohwy, 2013; Kilner and Frith, 2008; Koster-Hale and Saxe, 2013; 
Theriault et al., 2019; also, see Ondobaka et al., 2017). 

If this general predictive account were correct, then one would 
expect to see multiple functional associations within ToMN regions, 
given that several stimulus features may simultaneously facilitate 
updating predictions about latent mental states. We observed exactly 
this: in addition to the association, within morals, between ToMN ac
tivity and metaethical judgments, we also observed a positive associa
tion between the presence of a person and ToMN activity across facts, 
morals, and preferences, a negative association between agreement and 
ToMN activity among morals, and a positive association between mental 
state inferences and ToMN activity among preferences. On a general 
predictive interpretation, across facts, morals, and preferences the 
presence of a person may facilitate predictions about mental states (as 
their presence provides a referent for mental state predictions), whereas 
metaethical features may only facilitate predictions about mental states 

among moral statements (as social consensus is generally more likely to 
guide predictions in the moral domain than among facts and prefer
ences; see section 4.2). Although our present findings are only consistent 
with this account—and not definitive evidence for it—a general account 
of ToMN activity may nonetheless be a more attractive way to integrate 
the heterogeneity of previously observed associations in ToMN regions 
and the cortex surrounding them, especially when considering the as
sociation between ToMN activity and metaethical judgment observed in 
the present work. 

4.2. Morality and metaethics in an informational context 

Principles of information theory and predictive processing—e.g. that 
perfectly predictable signals carry no information—are of obvious use to 
neuroscience, as they make concrete predictions about how information 
is represented within the brain. Although the utility of these perspec
tives may appear less obvious in the context of morality, they may 
actually help to organize a variety of insights into the nature and 
importance of moral beliefs under a coherent theoretical framework. 
Critically, an understanding of social information grounded in predic
tion, prediction error, and the precision of predictions, may provide new 
perspectives on metaethical judgment, the importance of morality to 
social identity, and the demarcation of social domains (i.e. morals vs. 
preferences). Below, we review each of these potential contributions in 
turn. 

Objective moral beliefs are moral beliefs that are supported by a 
social consensus (Ayars and Nichols, in press; Beebe, 2014; Goodwin and 
Darley, 2012; Heiphetz and Young, 2017), making them predictable. By 
extension, if objective moral beliefs are predictable (i.e. on the basis of 
social consensus), then affirming them carries less information. For 
example, when someone tells you they believe that “drinking and 
driving is wrong”, then their beliefs roughly match what you would have 
already predicted, knowing nothing about them. Conversely, disavow
ing an objective moral belief provides more information about the 
person who does the disavowing, e.g. hearing someone say “drinking 
and driving is good” is informative about them. In this way, metaethics 
may be productively conceptualized (for some purposes) in informa
tional terms: objective and subjective moral claims may roughly corre
spond to moral claims that are uninformative and informative, 
respectively. 

The centrality of moral beliefs to people’s perceptions of individual 
identity has been demonstrated in experimental contexts involving hy
pothetical (Heiphetz et al., 2018; Strohminger and Nichols, 2014) and 
real (Strohminger and Nichols, 2015) moral changes. For example, 
changes in a person’s moral beliefs are judged as changing their core 
identity more than changes in memories or physical abilities. In infor
mational terms, if moral beliefs are generally predicted to remain more 
consistent over time than memories, then moral changes may be un
derstood as representing an informationally important shift in an in
dividual’s personality. That is, we expect memories and physical 
abilities to change; but we do not expect moral changes to the same 
degree, making such changes more informative. Of course, this leaves 
unanswered why moral beliefs are predicted to remain more consistent 
over time, a line of questioning that could be pursued in future work. 

Finally, behavioral and neural distinctions between social domains 
(e.g. morals vs. preferences) might be explained by differences in how 
predictive processes are applied, for example, differences in the preci
sion of predictions that are typically made about the domain. In the 
context of information theory and predictive processing models, pre
diction error is determined by both the prediction (e.g. a distribution, 
with a mean) and its precision (e.g. the width of that distribution; 
Feldman and Friston, 2010; Kim et al., 2020; Van de Cruys et al., 2014). 
For example, a slight deviation from the mean of a high-precision pre
diction (i.e. a tight distribution) would create more prediction error than 
a slight deviation from the mean of a low-precision prediction. Pre
dictions in some social domains may be more precise than in others. For 

6 Geng and Vossell (2013, p. 2616) are also clear that updating in the context 
of mental inference may be subserved by distinct sub-regions within the TPJ (as 
in Scholz et al., 2009) under the umbrella of this more general process of 
contextual updating. 
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example, in the context of morality, a culture often accepts only one, or a 
few, beliefs as acceptable (e.g. on the acceptability of slavery), whereas 
on questions of preferences, many beliefs are acceptable (e.g. on the best 
flavor of ice cream).7 On an information theoretic perspective, this 
would mean that predictions in the moral domain may be (on average) 
more precise than predictions in the preference domain. This interpre
tation that may explain our previous finding that moral statements elicit 
greater activity than preferences throughout the ToMN (Theriault et al., 
2017), as low-precision predictions about the preferences of generic 
people afford less opportunity for predictions to be violated (and pre
diction error to be generated). Further, an explanatory framework 
grounded in predictive processes may provide an avenue for under
standing other discrepancies we observed, e.g. that ToMN activity was 
associated with mental state information among preferences but not 
among morals (Fig. 5b–d). Rather than assuming that mental inference 
draws on different brain regions for morals and preferences, we propose 
that common predictive processes support mental inference across 
diverse social contexts. Of course, future work might more closely 
examine factors that vary across these contexts (e.g. predictive preci
sion); but nonetheless, we believe that understanding social cognition in 
information-based terms may be a productive method to integrate 
several empirical findings in social psychology, both with each other and 
with emerging and unifying predictive theories of cortical function. 

4.3. Probing BOLD activity through item analysis 

Finally, it is worth emphasizing the potential benefits of the item 
analysis approach used in the present work. Social information is com
plex, and although one analytic approach would be to fully embrace this 
complexity, this would also complicate investigations of specific fea
tures and their influence on BOLD activity. At the other end of the 
spectrum, computational models can cleanly characterize a process, but 
also require that the task be somewhat removed from naturalistic con
texts (e.g. as in economic games). Item analysis offers a middle path, 
where researchers can relax constraints on their stimulus set to maxi
mize variance and generalizability (Westfall et al., 2017), but, at the 
same time, conduct fine-grained analyses across the feature space rep
resented by the population of stimuli. Furthermore, this approach is 
advantageous in that stimuli can be normed and reused—e.g. re
searchers can utilize our stimuli (and our by-stimulus estimates) to test 
their own hypotheses about the dimensions underlying BOLD activity 
(see Appendix A for the complete stimulus set and paired by-stimulus 
estimates, and see https://osf.io/cx4dp/for raw functional, anatom
ical, and behavioral by-stimulus estimates in standardized BIDS format; 
Gorgolewski et al., 2016). By-stimulus variability is often left unexam
ined in existing datasets (e.g. in an emotional expression task, amygdala 
activity varies across emotional faces; Westfall et al., 2017), and future 
work in neuroimaging may benefit from adopting this underutilized 
method of independently norming stimuli to examine by-stimulus 
variance. 

4.4. Conclusion 

The theory of mind network is broadly involved in social cognition 
(for review, see Amodio and Frith, 2006; Schurz et al., 2014, 2017; Van 
Overwalle, 2009), and it has recently been suggested that a more general 
computational process may account for this activity: processing pre
diction error in social contexts (Koster-Hale and Saxe, 2013). Prior work 
has been consistent with this hypothesis, but this work has generally 
examined social expectations formed inside the lab (e.g. Dungan et al., 
2016; Saxe and Wexler, 2005) or under conditions of explicit instruction 
(Brass et al., 2007; de Lange et al., 2008), and has not conducted more 
fine-grained analyses of by-stimulus variance. In the present work, we 
leveraged an existing dataset (Theriault et al., 2017) to examine 
by-stimulus variability in ToMN evoked by moral statements, focusing 
on preexisting expectations as operationalized by metaethical judg
ments. We observed that ToMN activity was negatively associated with 
moral objectivity (i.e. how fact-like a moral statement was judged to be, 
by an independent online sample) and positively associated with moral 
subjectivity (i.e. how preference-like a moral statement was judged to 
be, by an independent online sample). This finding is consistent with 
hypotheses derived from predictive processing models, and, although it 
is not definitive, it underscores the need for an overarching explanation 
of ToMN activity that can accommodate the heterogeneity of associa
tions previously observed in these regions and in the cortex surrounding 
them (e.g. Carter and Huettel, 2013; Geng and Vossel, 2013; Koster-Hale 
and Saxe, 2013). 
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