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RESEARCH PAPER

How unexpected events are processed in theory of mind regions: A conceptual 
replication
Ryan M. McManus a, James A Dunganb, Kevin Jianga and Liane Younga

aDepartment of Psychology and Neuroscience, Boston College, Boston, MA, USA; bBooth School of Business, University of Chicago, Chicago, 
IL, USA

ABSTRACT
Recent research in social neuroscience has postulated that Theory of Mind (ToM) regions play a role 
in processing social prediction error (PE: the difference between what was expected and what was 
observed). Here, we tested whether PE signal depends on the type of prior information people use 
to make predictions – an agent’s prior mental states (e.g., beliefs, desires, preferences) or an agent’s 
prior behavior – as well as the type of information that confirms or violates such predictions. That 
is, does prior information about mental states (versus behavior) afford stronger predictions about 
an agent’s subsequent mental states or behaviors? Additionally, when information about an 
agent’s prior mental states or behavior is available, is PE signal strongest when information 
about an agent’s subsequent mental state (vs behavior) is revealed? In line with prior research, 
results suggest that DMPFC, LTPJ, and RTPJ are recruited more for unexpected than expected 
outcomes. However, PE signal does not seem to discriminate on the basis of prior or outcome 
information type. These findings suggest that ToM regions may flexibly incorporate any available 
information to make predictions about, monitor, and perhaps explain, inconsistencies in social 
agents.

ARTICLE HISTORY 
Received 8 December 2022  
Revised 16 April 2023  
Published online 31 May 
2023 

KEYWORDS 
Theory of mind; prediction 
error; social neuroscience

Introduction

Consider making the following prediction: “My father is 
going to pick me up from the airport when I fly home to 
visit tomorrow.” Given this prediction, you may be extre
mely surprised if he forgets to pick you up. Conversely, if 
your prediction was that he would forget to pick you up 
(perhaps because you just phoned him and he did not 
mention your travel plans), you may be especially sur
prised when he shows up at the airport right on time. In 
either case, you would experience social prediction error 
(i.e., a difference between what was expected and what 
was observed, within a social context).

There is a variety of information on which people base 
their predictions of others. This information can include but 
is not limited to: an agent’s prior behavioral history 
(Dungan et al., 2016; Heil et al., 2019), their prior mental 
states (Dungan et al., 2016), and descriptive or prescriptive 
norms (see J. E. Theriault et al., 2021). These sources can be 
used to predict not only an agent’s future behavior, but 
also their future mental states. For example, you might 
predict that your father will pick you up (or simply wants 
to pick you up) from the airport based on: his calling you to 
talk about your travel plans, explicit knowledge of his 

desire to pick you up (perhaps because your mother told 
you this), or the idea that parents tend to pick up their 
children from the airport. The current paper zeroes in on 
prior behavior and prior mental states as sources of social 
prediction, investigating whether the type of information 
on which people base their predictions, as well as the type 
of information that is being predicted, affects how surpris
ing an outcome is. Specifically, we examine the brain 
regions implicated in processing agents’ unexpected beha
vior and mental states as a function of their prior behavior 
and mental states.

Research on social prediction error has been steadily 
increasing, due to a seminal review article linking pre
dictive coding models to theory of mind (ToM) tasks in 
neuroscience (Koster-Hale & Saxe, 2013). Predictive cod
ing, put simply, is the idea that neuronal activity contains 
not only information about sensory input, but also infor
mation about the difference between expected and 
actual sensory input (e.g., Fiorilla et al., 2003; 
Wacongne et al., 2012). The crucial idea behind the 
marriage of predictive coding and ToM is that “most 
experiments on ToM depend on predictions based on 
prior expectations and an internal model of human 
behavior” (Koster-Hale & Saxe, 2013). As in the opening 
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example, you may make predictions about your father’s 
mental states (or behavior) based on his prior mental 
states (or behavior). In line with Koster-Hale and Saxe’s 
(2013) theorizing, if your predictions are not borne out, 
your experience of prediction error may be due to ToM 
regions (i.e., DMPFC, PC, LTPJ, and RTPJ) preferentially 
responding to information that is inconsistent with your 
predictions.

Extant research supports this notion, showing that 
predictions about a person’s mental states or behaviors 
are influenced by social knowledge. For example, Saxe 
and Wexler (2005) presented participants with stories 
about social agents whose mental states were consistent 
or inconsistent with expectations that follow from social 
norms within the target agent’s culture (e.g., your friend 
from high school, who has a happy marriage, confides in 
you that he [really hates the idea that/would find it fun 
if] his wife might ever have an affair). For participants, 
and for their imagined target friend, the cultural norm 
was that happily married people do not find it exciting if 
their partner wants a relationship with another person. 
RTPJ activity was stronger when the target’s cultural 
norms were violated, and this result held even when 
participants’ own cultural norms differed from the tar
get’s. Similarly, bilateral TPJ and MPFC were recruited 
more when participants learned about politicians whose 
political desires were incongruent (versus congruent) 
with their party identity (e.g., a democrat who wants 
a [smaller/larger] government), suggesting that these 
regions preferentially respond to expectation-violating 
information (Cloutier et al., 2011). Even knowledge of an 
agent’s ability (e.g., a novice versus an experienced 
bowler) is enough to produce prediction error in menta
lizing regions when performance is inconsistent with 
that ability (Heil et al., 2019).

In total, it seems that ToM regions flexibly encode 
different information types to make predictions and 
process expectation violations. This flexibility account 
finds additional support in recent work on metaethical 
judgments. J. Theriault et al. (2020) demonstrated that 
moral statements judged as more preference-like elicit 
greater ToM activity, whereas moral statements judged 
as more fact-like elicit less ToM activity. In each case, 
ToM activity was related not to an agent, but to social 
consensus regarding metaethics. However, even though 
past research is generally consistent with an account in 
which ToM regions flexibly encodes and uses the avail
able types of social information to make predictions and 
process their outcomes, individual studies have tended 
to focus on only a single type of information when 
engendering predictions or revealing outcomes.

More targeted research has attempted to isolate 
expectation-based ToM effects that result from 

nonsocial and social knowledge sources. Dungan et al. 
(2016) presented participants with stories that varied the 
source of an expectation (i.e., prior information about 
a nonsocial object, and prior information about a social 
agent [prior mental state vs prior behavior]), and 
whether subsequent behavior was consistent with that 
expectation. For nonsocial objects, results suggested 
that ToM regions were recruited less overall when com
pared to social agents. Moreover, ToM regions did not 
show effects at the univariate level for nonsocial objects’ 
violation of expectations, nor did these regions discrimi
nate between nonsocial objects’ unexpected versus 
expected behavior in multi-voxel pattern analyses 
(MVPA). For social agents, however, results showed 
that DMPFC and bilateral TPJ were preferentially 
recruited for unexpected over expected behaviors at 
the univariate level, and that these regions discriminated 
between unexpected and expected behavior in MVPA. 
Overall, these results suggest that ToM regions are selec
tively recruited for prediction error that is social in nat
ure. However, simple effects analyses revealed that the 
social prediction error effects in bilateral TPJ were evi
dent only when prior information was behavior.

Current research

Because Dungan et al. (2016) varied only the prior 
information type (i.e., behavior versus mental state) 
and not the outcome information (i.e., all outcomes 
were behaviors), it was impossible to know whether 
ToM regions would also preferentially respond to unex
pected mental state outcomes. Similarly, participants 
might have experienced especially strong prediction 
error if they had instead learned about a mental state 
that was inconsistent with a prior mental state. 
Additionally, because Dungan et al’s expectedness 
effect in bilateral TPJ occurred only when prior infor
mation was about behavior, it was impossible to know 
whether the lack of an effect in the other prior infor
mation condition (i.e., mental state) was simply due to 
a mismatch between prior and outcome types. For 
example, if your father did not show up at the airport 
to pick you up, and your prior information was that he 
simply wanted to pick you up, you may have consid
ered the fact that even though people sometimes want 
to do something, they often do not (or cannot) do it. 
Therefore, you may not find your father’s behavior 
particularly surprising. For these reasons, the current 
paper uses a novel paradigm to examine whether 
social prediction error occurs across brain regions typi
cally implicated in thinking about others’ minds, as 
well as whether these regions’ sensitivity to social 
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prediction error differs as a function of the type of 
information that is used to make predictions and the 
type of information that confirms or violates them.

fMRI experiment

Method

Participants
Participants were 25 right-handed adults were recruited 
from the Greater Boston Area. One participant, unable to 
remain still, was removed from the scanner partway 
through the study, resulting in a final N = 24 (age: M =  
24.08, SD = 4.11; 50% female). All participants were 
native English speakers, had normal or corrected-to- 
normal vision, and gave written informed consent in 
accordance with the Boston College Internal Review 
Board. Additionally, participants reported no psychiatric 
disorders or history of learning disabilities. Sample size 
was determined by available resources at the time data 
were collected; we note that although this sample size is 
small, it is typical of the time these data were collected in 
2015.

Procedure and materials
Participants were scanned while reading and respond
ing to 64 vignettes, learning and making predictions 
about 64 different agents (see Supplemental Online 
Materials [SOM]). Each story was presented in three 

sequential segments: Initial Info, Prediction, and Final 
Info (see Figure 1). During the Initial Info segment, parti
cipants read background information to establish an 
expectation about how an agent would likely think or 
behave in the future. During the Prediction segment, 
participants were presented with a multiple-choice 
question asking them to make a prediction about the 
agent’s future thoughts or behavior. Four options were 
provided: one that was expected based on the Initial Info 
segment, and three others that would be relatively unex
pected. Participants responded to this question by using 
a button-box. During the Final Info segment, the vign
ette’s outcome was presented, which corresponded to 
one option from the Prediction segment’s multiple- 
choice question.

Critically, we varied the type of information presented 
in each segment. The Initial Info segment consisted of 
either the agent’s 1) prior behavior, or 2) prior mental 
states. Similarly, during the Prediction segment, partici
pants made a prediction about either the agent’s 1) 
subsequent behavior, or 2) subsequent mental state. 
Last, the Final Info segment presented participants 
with either the agent’s 1) actual subsequent behavior, 
or 2) actual subsequent mental state, which was the 
same type of information queried in the Prediction seg
ment. Also, the Final Info segment presented was either 
expected or unexpected based on the information pro
vided in the Initial Info segment. For the Final Info seg
ment, an unexpected ending was shown on half of all 

Figure 1. Example experimental stimulus and its variants. Participants first read the initial information segment of the stimulus 
(Behavior or Mental), then made a prediction (Behavior or Mental), and last learned the final information. Importantly, final 
information type (Behavior or Mental) always matched prediction type. Participants never saw the same stimulus across conditions; 
different participants saw different experimental variations of the same stimulus.
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trials, whereas an expected ending was shown on the 
remaining trials. Crossing these dimensions (Initial Info, 
Final Info, and Expectedness) yielded 8 conditions in a 2 
(Initial Info: behavior, mental state) x 2 (Final Info: beha
vior, mental state) x 2 (Expectedness: expected, unex
pected) design. These three experimental factors were 
also manipulated within stimuli, constituting a fully 
within-subject/within-stimulus design. The order of con
ditions and pairing of conditions and vignettes were 
randomized across participants. An online behavioral 
sample, that completed the same task as the fMRI parti
cipants did, verified that we successfully manipulated 
expectedness (see SOM Table 1).

The vignettes were presented in a pseudo- 
randomized order in white font on a black background 
via an Apple MacBook Pro running MATLAB 8.5 (2015) 
with Psychophysics Toolbox. The Initial Info segment 
was presented on-screen for 10 seconds, the Prediction 
segment for 8 seconds, and the Final Info segment for 4  
seconds. To analyze Initial Info and Final Info segments 
separately, 0, 2, or 4 seconds of jittered fixation were 
included between each story segment. Stimulus presen
tation was divided into 8 equal runs (8 stimuli per run, 
1 per condition) lasting 4 minutes and 4 seconds each.

Functional localizer
Participants also completed a theory of mind (ToM) 
functional localizer task (Dodell-Feder et al., 2011) con
sisting of 10 stories about mental states (e.g., false-belief 
condition) and 10 stories about physical representations 
(e.g., false-photograph condition). The task was pre
sented in two 4.5-minute runs, interleaved between 
experiment runs.

fMRI Data Acquisition and Preprocessing
The fMRI data were collected using a 16-channel head 

coil in a 3T Siemens scanner at the Athinuoula 
A. Martinos Imaging Center, Massachusetts Institute of 
Technology. Data were acquired in 36 near-axial slices (3  
mm isotropic voxels, 0.54 mm gap). Standard gradient 
echo planar imaging (EPI) procedures were used (TR =  
2000 ms; TE = 30 ms; flip angle = 90°; FOV = 216 × 216; 
interleaved acquisition). Anatomical data were collected 
with T1-weighted multi-echo magnetization prepared 
rapid acquisition gradient echo image sequences 
(MEMPRAGE) using the following parameters: TR =  

2530 ms; TE = 1.64 ms; FA = 7°; 1 mm isotropic voxels; 
0.5 mm gap between slices; FOV = 256 × 256. Data pro
cessing and analysis were performed using fMRIPrep 
(Esteban et al. (2019); see Supplementary Materials p. 1 
for details), SPM12 (https://www.fil.ion.ucl.ac.uk/spm/ 
software/spm12/), and custom software. The functional 
data were realigned, coregistered to the anatomical 
image, normalized onto a common brain space 
(Montreal Neurological Institute, MNI, template), spa
tially smoothed using a Gaussian filter (fullwidth half- 
maximum = 8 mm kernel), and high-pass filtered (128  
Hz). Neural responses were modeled in an event- 
related design using a general linear model (GLM), with 
conditions modeled as boxcar functions convolved with 
a canonical hemodynamic response function (HRF). The 
GLM included the six components of the anatomical 
CompCor variant (aCompCor) as nuisance regressors 
(Behzadi et al., 2007).

Analytic approach
Whole-brain and regions of interest (ROI) analyses were 
conducted. For whole-brain analyses, we first conducted 
a whole-brain random effects analysis (voxel-wise 
threshold: p < .001, uncorrected; k > 16; cluster-wise 
threshold: p < .05, FWE-corrected) of behavior over men
tal conditions during the Initial Info segment. Second, 
we conducted a whole-brain random effects analysis of 
mental over behavior conditions during the Initial Info 
segment. Third, we conducted a whole-brain random 
effects analysis of expected over unexpected conditions 
during the Final Info segment. Fourth, we conducted 
a whole-brain random effects analysis of unexpected 
over expected conditions during the Final Info segment. 
For all whole-brain analyses, assignments of coordinates 
to brain regions were aided by use of the label4MRI 
package in R (Chuang, 2020), which performs automatic 
anatomic labeling (AAL) based on the most recently 
updated atlas, AAL3 (Rolls et al., 2020; see our OSF 
page for an RMarkdown file). Next, we describe the ROI 
analyses.

A whole-brain contrast of false-belief versus false- 
photograph stories in the ToM localizer task (Dodell- 
Feder et al., 2011) was used to identify ROIs implicated 
in ToM: DMPFC (N = 20), PC (N = 23), LTPJ (N = 22), and 
RTPJ (N = 23). ROIs were selected for each participant 

Table 1. Average Peak MNI coordinates for ToM in Functional Localizer Task.
MNI Coordinates

ROI N X Y Z Voxels t-value

RTPJ 23 53 −55 23 93 8.07
LTPJ 22 −49 −55 24 75 6.58
PC 23 −2 −58 34 85 6.40
DMPFC 20 3 51 23 61 5.47

158 R. M. MCMANUS ET AL.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


individually and defined as contiguous voxels within 
a 9-mm radius of the peak voxel that passed contrast 
threshold (see Table 1 for by-ROI coordinate informa
tion). Within each ROI, the average percent signal 
change (PSC) relative to runwise baseline (PSC =  
100×raw BOLD magnitude for (condition−fixation)/raw 
BOLD magnitude for fixation) was calculated for each 
condition at each time point (averaging across all voxels 
in the ROI and all blocks of the same condition). Initial 
Info and Final Info segments were modeled separately. 
Timepoints were shifted by 6 seconds to account for 
hemodynamic lag. The Prediction segment was not 
analyzed.

Importantly, for all ROI analyses, we analyzed only 
trials on which participants selected the correct outcome 
prediction (i.e., the option that we determined, a priori, 
was the most likely to occur given the information that 
participants received in the Initial Info segment). This 
was done to ensure that our results were uncontami
nated by the possibility of participants’ lack of attention, 
random responding, or their own expectations being 
different from the paradigm’s intended expectations. 
The frequency of incorrect predictions was similar across 
Initial Info x Final Info conditions (i.e., BB, BM, MB, MM): 
16%, 12%, 15%, and 13% of each condition’s total trials 
were incorrect, respectively. Further, we removed 
images according to the following criteria: individual 
scans, along with their two temporally adjacent scans, 
were excluded if framewise displacement (FD) (Power 
et al., 2012) exceeded 0.5 mm; individual runs were 
excluded if either (1) FD for more than two-thirds of 
the scans in that run exceeded 0.5 mm or (2) FD for 
any scan in that run exceeded 3 mm (see results’ table 
notes for final analyzable Ns). With the above data trans
formations/exclusions in mind, we next explain how we 
arrived at analyzable data. Specifically, for each partici
pant’s stimuli, multiple segments were presented (e.g., 
participant 1’s Initial Info segment for vignette 1). Within 
each participant’s stimulus, we averaged across time 
course activity during the segment of interest (account
ing for hemodynamic lag). Finally, we used those 
averages in linear mixed effects models, meaning that 
each participant, for each stimulus, had a single PSC 
value for a specific segment of the experimental design.

For all ROI analyses, linear mixed effects models 
were constructed in R (R Core Team, 2021) to simulta
neously account for variability across participants and 
stimuli (Judd et al., 2012). Within each ROI, we 
attempted to fit a maximal model that allowed all 
main effects and interactions to vary over participants 
and stimuli. If the maximal model failed to converge or 

yielded a singular fit, we followed guidelines to avoid 
false positives (see Barr et al., 2013; Barr, 2013; 
Singmann & Kellen, 2019). First, we simplified the ran
dom effects structure by removing all correlations 
between random effects. Next, if the zero-correlation 
model failed to converge or converged with a singular 
fit, we further simplified the random effects structure 
by removing variance components that were esti
mated as zero. If this further reduced model resulted 
in non-convergence, or convergence with a singular 
fit, we repeated the second step. If there were no 
remaining variances estimated as zero, we removed 
the smallest variance components, one at a time, 
until the model converged with a non-singular fit. 
Last, when appropriate, we attempted to add random 
effects’ correlations back into the model (see Bates 
et al., 2018). If this extended model converged with 
a non-singular fit, we retained it as our final model. 
However, if this extended model did not converge, or 
converged with a singular fit, we retained the non- 
extended model as our final model. We report only 
our final models here. The entire model selection pro
cess (i.e., specifications and simplifications) can be 
found on our OSF page: https://osf.io/tf852/.

Whole-brain results

As described above, we first conducted a whole-brain 
random effects analysis of behavior over mental condi
tions during the Initial Info segment. This contrast 
revealed only one peak cluster in the right angular 
gyrus [48, −64, 31]. Second, we conducted a whole- 
brain random effects analysis of mental over behavior 
conditions during the Initial Info segment. However, no 
peak clusters emerged for this contrast. Third, we con
ducted a whole-brain random effects analysis of 
expected over unexpected conditions during the Final 
Info segment. Fourth, we conducted a whole-brain ran
dom effects analysis of unexpected over expected con
ditions during the Final Info segment. See Table 2 for 
peak clusters revealed for these final two contrasts. We 
note that none of the ToM regions passed threshold in 
whole-brain contrasts for unexpected over expected 
outcomes.

ROI results

Initial info
Here, we investigated the effect of the Initial Info 
manipulation on neural activity during the Initial 
Info segment. We note that model reduction within 
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each ROI sometimes led to different random effects 
structures across ROIs. We chose this strategy of 
conservatism (rather than an anti-conservative 

strategy which held random effects structures con
stant across ROIs) to avoid false positives in some 
ROIs. Within each ToM ROI, there was no effect of 

Table 2. Regions passing threshold in whole-brain analysis during Final Info segment.
MNI Coordinates

Contrast Region X Y Z t-Value Cluster Size

Expected > Unexpected
L middle occipital gyrus −48 −79 1 9.22 704
L superior temporal gyrus −63 −31 13 7.83 446
R precuneus 12 −76 55 7.36 1864
R superior frontal gyrus (dorsolateral) 21 −1 73 5.43 84
R inferior temporal gyrus 51 −67 −5 5.33 210
R lobule VI cerebellar hemisphere 21 −64 −14 5.00 169
L lingual gyrus −12 −88 −11 4.93 116

Unexpected > Expected
L supplementary motor area −6 17 64 11.34 3567
R inferior frontal gyrus pars orbitalis 48 26 −11 9.14 1019
R thalamus 12 −7 7 7.67 129
L lobule VI/V cerebellar hemisphere −18 −37 −29 6.94 166
R middle temporal gyrus 48 −22 −11 5.90 157
L middle temporal gyrus −57 −34 −8 5.82 224
R lobule VI cerebellar hemisphere 33 −61 −29 5.31 192
L angular gyrus −45 −55 31 4.90 147

Table 3. DMPFC activity during Initial Info segment.
Final Model: 
PSC ~ Initial + (1 | Item) + (1 | Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5)

Random Effects Var. SD

Item
Intercept .003 .052

Subject
Intercept .015 .124

Residual
.116 .341

Fixed Effects b (SE) t (df) p-value
Intercept −.03 (.03) −1.01 (21) .325
Initial .01 (.02) 0.53 (997) .593

Note. Analysis included 1063/1280 observations from 20 subjects and 64 items. Degrees of freedom were Satterthwaite- 
approximated and rounded to the nearest integer for all analyses.

Table 4. PC activity during Initial Info segment.
Final Model: 
PSC ~ Initial + (1 + Initial || Item) + (1 | Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5)

Random Effects Var. SD

Item
Intercept .002 .048
Initial .001 .031

Subject
Intercept .006 .079

Residual
.103 .322

Fixed Effects b (SE) t (df) p-value
Intercept −.04 (.02) −2.07 (24) .049 *
Initial −.00 (.02) −0.01 (60) .992

Note. Analysis included 1234/1472 observations from 23 subjects and 64 items.
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the Initial Info manipulation on neural activity dur
ing the Initial Info segment. See Tables 3–6 for 
detailed information about all final models (i.e., cod
ing scheme, random effects structure, random 
effects estimates, and fixed effects estimates). These 
patterns held when analyzing neural activity aver
aged across the entire ToM network (see Table 7).

Final info
Here, we investigated the effect of the Initial Info, Final Info, 
and Expectedness manipulations on neural activity during 
the Final Info segment. See Figure 2 for results plotted by 
ROI and Tables 8–11 for detailed information about all final 
models. We note, here too, that model reduction within 
each ROI sometimes led to different random effects 

Table 5. LTPJ activity during Initial Info segment.
Final Model: 
PSC ~ Initial + (1 + Initial | Item) + (1 | Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5)

Random Effects Var. SD Correlations

Item
Intercept .003 .051 -
Initial .005 .067 .23 -

Subject
Intercept .049 .222 -

Residual
.087 .294

Fixed Effects b (SE) t (df) p-value
Intercept .12 (.05) 2.54 (22) .019 *
Initial −.01 (.02) −0.67 (65) .508

Note. Analysis included 1189/1408 observations from 22 subjects and 64 items.

Table 6. RTPJ activity during Initial Info segment.
Final Model: 
PSC ~ Initial + (1 | Item) + (1 | Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5)

Random Effects Var. SD

Item
Intercept .001 .036

Subject
Intercept .012 .108

Residual
.071 .267

Fixed Effects b (SE) t (df) p-value
Intercept −.02 (.02) −0.68 (23) .504
Initial .01 (.02) 0.61 (1161) .539

Note. Analysis included 1234/1472 observations from 23 subjects and 64 items.

Table 7. ToM Network activity (averaged across ROIs) during Initial Info segment.
Final Model: 
PSC ~ Initial + (1 | Item) + (1 | Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5)

Random Effects Var. SD

Item
Intercept .002 .039

Subject
Intercept .009 .095

Residual
.047 .216

Fixed Effects b (SE) t (df) p-value
Intercept .01 (.02) 0.30 (24) .768
Initial .00 (.01) 0.13 (1158) .897

Note. Analysis included 1234 observations from 23 subjects and 64 items.
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Figure 2. PSC during Final Info segment within each ROI. On the x-axis, the top factor (Behavior vs Mental) refers to the Initial Info 
manipulation, whereas the bottom factor (Behavior vs Mental) refers to the Final Info manipulation. Solid bars show expected 
outcome estimates, whereas patterned bars show unexpected outcome estimates. Estimates are predicted means from each ROI’s 
linear mixed effects model. Error bars represent ± 1 SE for the predicted mean.

Table 8. DMPFC activity during Final Info segment.
Final Model: 
PSC ~ Initial*Final*Expected + 
(1 + Final + Initial:Final + Initial:Expected + Final:Expected || Item) + 
(1 + Expected + Initial:Final:Expected || Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Final Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Expectedness: Contrast coded (Expected = −0.5; Unexpected = +0.5)

Random Effects Var. SD

Item
Intercept .002 .045
Final .000 .094
Initial:Final .014 .119
Initial:Expected .008 .091
Final:Expected .013 .113

Subject
Intercept .027 .163
Expected .007 .081
Initial:Final:Expected .004 .064

Residual
.123 .350

Fixed Effects b (SE) t (df) p-value
Intercept −.02 (.04) −0.45 (20) .659
Initial .05 (.02) 2.13 (869) .033 *
Final −.03 (.03) −1.36 (60) .178
Expected .10 (.03) 3.35 (17) .004 **
Initial:Final −.00 (.05) −0.04 (63) .965
Initial:Expected −.05 (.05) −1.06 (60) .294
Final:Expected .01 (.05) 0.12 (62) .903
Initial:Final:Expected −.04 (.09) −0.46 (14) .653

Note. Analysis included 1021/1280 observations from 20 subjects and 64 items.
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Table 9. PC activity during Final Info segment.
Final Model: 
PSC ~ Initial*Final*Expected + 
(1 + Expected + Initial:Final + Initial:Expected + Initial:Final:Expected || Item) + 
(1 + Initial:Expected || Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Final Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Expectedness: Contrast coded (Expected = −0.5; Unexpected = +0.5)

Random Effects Var. SD

Item
Intercept .002 .044
Expected .000 .001
Initial:Final .016 .128
Initial:Expected .005 .069
Initial:Final:Expected .043 .209

Subject
Intercept .010 .100
Initial:Expected .002 .046

Residual
.104 .323

Fixed Effects b (SE) t (df) p-value
Intercept −.03 (.02) −1.47 (24) .156
Initial .03 (.02) 1.51 (991) .140
Final −.00 (.02) −0.21 (989) .829
Expected .03 (.02) 1.68 (63) .100
Initial:Final .00 (.04) 0.10 (61) .924
Initial:Expected −.06 (.04) −1.55 (17) .139
Final:Expected −.05 (.04) −1.30 (979) .194
Initial:Final:Expected −.07 (.08) −0.91 (59) .368

Note. Analysis included 1179/1472 observations from 23 subjects and 64 items.

Table 10. LTPJ activity during Final Info segment.
Final Model: 
PSC ~ Initial*Final*Expected + 
(1 + Initial + Expected + Initial:Final + Initial:Expected + Final:Expected + 
Initial:Final:Expected || Item) + 
(1 + Expected || Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Final Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Expectedness: Contrast coded (Expected = −0.5; Unexpected = +0.5)

Random Effects Var. SD

Item
Intercept .002 .040
Initial .002 .047
Expected .005 .069
Initial:Final .029 .169
Initial:Expected .013 .113
Final:Expected .022 .148
Initial:Final:Expected .052 .228

Subject
Intercept .037 .192
Expected .001 .027

Residual
.093 .306

Fixed Effects b (SE) t (df) p-value
Intercept .09 (.04) 2.10 (21) .048 *
Initial −.01 (.02) −0.48 (58) .631
Final −.03 (.02) −1.54 (894) .125
Expected .06 (.02) 2.72 (17) .015 *
Initial:Final −.05 (.04) −1.08 (61) .284
Initial:Expected −.02 (.04) −0.62 (61) .550
Final:Expected .01 (.04) 0.35 (59) .726
Initial:Final:Expected .05 (.08) 0.60 (60) .553

Note. Analysis included 1134/1408 observations from 22 subjects and 64 items.
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Table 11. RTPJ activity during Final Info segment.
Final Model: 
PSC ~ Initial*Final*Expected + 
(1 + Initial:Final + Initial:Final:Expected || Item) + 
(1 + Expected + Initial:Expected + Final:Expected + Initial:Final:Expected || Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Final Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Expectedness: Contrast coded (Expected = −0.5; Unexpected = +0.5)

Random Effects Var. SD

Item
Intercept .001 .024
Initial:Final .008 .087
Initial:Final:Expected .002 .069

Subject
Intercept .014 .117
Expected .000 .015
Initial:Expected .005 .068
Final:Expected .001 .030
Initial:Final:Expected .026 .162

Residual
.083 .229

Fixed Effects b (SE) t (df) p-value
Intercept .02 (.03) 0.60 (22) .552
Initial −.00 (.02) −0.21 (986) .828
Final .00 (.02) 0.21 (988) .836
Expected .06 (.02) 3.24 (21) .004 **
Initial:Final .05 (.04) 1.31 (60) .195
Initial:Expected −.02 (.04) −0.55 (18) .590
Final:Expected −.01 (.03) −0.24 (22) .813
Initial:Final:Expected .04 (.08) 0.52 (17) .611

Note. Analysis included 1179/1472 observations from 23 subjects and 64 items.

Table 12. ToM Network activity (averaged across ROIs) during Final Info segment.
Final Model: 
PSC ~ Initial*Final*Expected + 
(1 + Final + Expected + Initial:Final + Final:Expected + 
Initial:Final:Expected || Item) + 
(1 | Subject) 
Coding: 
Initial Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Final Info: Contrast coded (Mental = −0.5; Behavior = +0.5) 
Expectedness: Contrast coded (Expected = −0.5; Unexpected = +0.5)

Random Effects Var. SD

Item
Intercept .001 .035
Final .001 .032
Expected .000 .016
Initial:Final .007 .083
Final:Expected .007 .082
Initial:Final:Expected .021 .146

Subject
Intercept .012 .109

Residual
.052 .227

Fixed Effects b (SE) t (df) p-value
Intercept .01 (.02) 0.40 (23) .696
Initial .01 (.01) 1.07 (953) .284
Final −.01 (.01) −1.06 (61) .294
Expected .06 (.01) 4.36 (61) <.001 ***
Initial:Final .00 (.03) 0.08 (61) .938
Initial:Expected −.03 (.03) −1.25 (949) .212
Final:Expected −.01 (.03) −0.41 (61) .684
Initial:Final:Expected −.00 (.06) −0.02 (64) .985

Note. Analysis included 1179 observations from 23 subjects and 64 items.
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structures across ROIs. We chose this strategy of conserva
tism (rather than an anti-conservative strategy which held 
random effects structures constant across ROIs) to avoid 
false positives in some ROIs.

In DMPFC, LTPJ, and RTPJ, there were main effects of 
Expectedness, such that neural activity was higher when 
the final information was unexpected compared to 
expected (DMPFC: b = .10, SE = .03, p = .004; LTPJ: b  
= .06, SE = .02, p = .015; RTPJ: b = .06, SE = .02, p = .004). 
This main effect of Expectedness held when analyzing 
neural activity averaged across the entire ToM network 
(see Table 12). To investigate the robustness of these 
unexpectedness effects, we investigated how many par
ticipants showed them, finding that most participants 
showed these effects within each ROI (DMPFC = 16/20; 
LTPJ = 13/22; RTPJ = 17/23). Additionally, in DMPFC only, 
there was a main effect of Initial Info, such that neural 
activity during the Final Info segment was higher when 
Initial Info was behavior (compared to mental), b = .05 
(SE = .02), p = .033. No other main effects or interactions 
were observed.

General discussion

The current work investigated whether social prediction 
error (i.e., the difference between what was expected 
and what was observed) occurs across brain regions 
typically implicated in thinking about others’ minds, as 
well as whether these regions’ sensitivity to social pre
diction error differs as a function of the type of informa
tion that is used to make predictions and confirm or 
violate them. When people learned about an agent’s 
unexpected mental states or behavior, DMPFC, LTPJ, 
and RTPJ activity was higher than when people learned 
about an agent’s expected mental states or behaviors. 
But no region showed differential effects of expected
ness based on the type of information that was used to 
make predictions or confirm/violate them (i.e., mental 
states versus behaviors), suggesting that these regions 
may flexibly incorporate any available social information 
to make predictions about and monitor or explain social 
inconsistencies. These findings add to a growing litera
ture (e.g., Cloutier et al., 2011; Dungan et al., 2016; Heil 
et al., 2019; J. Theriault et al., 2020; Saxe & Wexler, 2005) 
supporting the link between predictive coding and ToM 
activity (Koster-Hale & Saxe, 2013). However, some of our 
results are consistent with prior research, whereas others 
are not.

In the current experiment, effects of expectedness in 
DMPFC, LTPJ and RTPJ are consistent with prior work. 
Specifically, such effects have been found in investiga
tions of unexpected behaviors (Dungan et al., 2016; Heil 
et al., 2019) and unexpected mental states (Cloutier 

et al., 2011). Additionally, that we did not find an effect 
of expectedness in PC is also consistent with prior 
research (Dungan et al., 2016). However, we caution 
readers that this lack of detection (as well as other null 
effects) could be interpreted in the following ways: (1) 
no effect occurs in PC, (2) a theoretically meaningful but 
small effect occurs in PC but could not be detected, or (3) 
any effect that occurs in PC is too small to be theoreti
cally meaningful. Because there will be disagreement 
about what is theoretically meaningful to all researchers, 
we do not take a firm position on this issue. We do note 
the following: in the current experiment, standardized 
effect sizes for expectedness in DMPFC (d = 0.21), LTPJ 
(d = 0.11), and RTPJ (d = 0.15) ranged from more than 
1.5× − 3× the standardized effect size for expectedness 
in PC (d = 0.07) (All d’s were calculated using variance 
estimates, as described in Brysbaert & Stevens, 2018; 
Westfall et al., 2014). These estimates, combined with 
Dungan et al.’s reported null effect, suggests that PC 
may diverge from other ToM regions in monitoring 
expectation violations.

Other findings in the current experiment are some
what surprising considering prior research. In particular, 
expectedness effects in ToM regions were not moder
ated by the type of information that engendered or 
violated predictions. On one popular account of cultural 
learning, people attend to “credibility-enhancing” dis
plays to determine their degree of confidence in some
one else’s beliefs (Henrich, 2009), being more confident 
in someone else’s beliefs when a costly behavior reflects 
the purported belief. Applying this logic to the current 
data, one possibility is that prior behaviors could have 
served as stronger predictors of subsequent behaviors/ 
mental states because behaviors are interpreted as bet
ter signals of one’s current beliefs or intentions. For 
example, community organizers who had themselves 
installed solar panels were more effective in recruiting 
new residents to install solar panels than organizers who 
had not done so, as the former engaged in costly beha
vior which was inferred as an honest signal of their belief 
in the technology’s benefit (Kraft-Todd et al., 2018).

This possibility is also consistent with research by 
Dungan et al. (2016) in which an expectedness effect 
in RTPJ was driven by one condition (see Figure 2 of 
Dungan et al.). In the outcome segment, Dungan et al. 
reported that RTPJ showed an expectedness effect 
only when prior information was behavior (but not 
mental), suggesting that RTPJ may be recruited speci
fically when an agent’s subsequent behavior is incon
sistent with their prior behavior, perhaps in order to 
generate mental states that explain the behavioral 
inconsistency (see Decety & Lamm, 2007). In the cur
rent experiment, however, when outcome information 
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was behavior (as was always true in Dungan et al.,  
2016), we did not replicate this finding. More specifi
cally, both expectedness simple effects were identical 
in magnitude in our data (initial behavior d = 0.14; 
initial mental d = 0.14). Using all of our data, we also 
failed to detect a three-way interaction among prior 
information, outcome information, and expectedness, 
suggesting that Dungan et al. (2016) findings in RTPJ 
may not be due to mismatches between prior infor
mation and outcome information.

On the other hand, on the logic that people can never 
be certain about the inferred mental states of others, 
explicit mental states could have served as stronger 
predictors of subsequent behaviors/mental states. That 
participants might make the most reliable predictions 
about future mental states based on prior mental states 
is also consistent with recent theoretical work arguing 
that people can track the transitional probabilities 
between mental states (Tamir & Thornton, 2018). Even 
though people do not come with thought bubbles 
above their heads in the real world, participants in the 
current experiment were given explicit access to others’ 
mental states in a thought-bubble-like way. Therefore, 
the current data’s lack of prior-by-outcome information 
moderation on prediction error signals is surprising. 
However, it has also been argued that social outcomes 
are inherently much less predictable than nonsocial out
comes (FeldmanHall & Shenhav, 2019), which may 
explain why social information type does not moderate 
the effects here. Further experimentation, and much 
larger (and therefore higher-powered) fMRI paradigms 
are needed to better understand if, when, and how 
social prediction error interacts with the type of social 
information that predictions and violations were based 
on, as the observed null interactions could simply be 
false negatives.

There are multiple methodological features that may 
explain inconsistencies between the current work and 
Dungan et al.’s findings specifically. First, a strength of 
the current work is that stimuli were constructed for 
both behavioral and mental conditions of the prior infor
mation segment (see Figure 1 for an example), whereas 
stimuli in Dungan et al. were nested in a particular prior 
information condition (i.e., completely different stimuli 
constituted behavior versus mental conditions). 
Therefore, Dungan et al. “s effects of initial behavior 
versus initial mental states may have been driven by 
stimulus differences rather than a true distinction 
between information types. Second, data in the current 
experiment were analyzed with linear mixed effects 
models as opposed to traditional repeated-measures 
ANOVAs. For multilevel data (e.g., responses nested 
within participants/stimuli), linear mixed effects models 

better control Type I error rates by retaining the true 
variability in the data and adjusting standard errors of 
test statistics to account for the possibility that some 
participants/stimuli will respond (to an experimental 
manipulation) differently than other participants/stimuli. 
Therefore, some of Dungan et al.”s effects may have 
been due to specific participants or stimuli behaving in 
ways that led to a group-level effect which was not 
representative of most participants or stimuli. These 
methodological changes can also explain another dis
crepancy between the present data and Dungan et al.’s. 
In the prior information segment, Dungan et al. detected 
an effect in which RTPJ activity was higher when initial 
information was behavior (versus mental), suggesting 
that RTPJ may play a special role in mental state infer
ence based on witnessed behavior rather than proces
sing mental states directly. However, in the current 
experiment, we found no evidence of this effect (d =  
0.03). Sample size issues notwithstanding, we believe 
that the methods of the current experiment offer the 
best tests of the ideas under investigation thus far. 
Therefore, that we successfully replicated prior 
research’s effects of expectedness lends especially 
strong evidence to the idea that DMPFC, LTPJ, and 
RTPJ are ToM regions coding for discrepancies between 
social predictions and their outcomes.

Limitations and future directions

Although the current experiment improved on prior 
work, it has important limitations. First, our design 
focused on people’s predictions about unknown others 
based on a single prior behavior or mental state. 
However, people more typically interact with and make 
predictions about agents they know. Social prediction 
error may occur more strongly or weakly depending on 
one’s relationship to the agent who is the object of 
prediction. For example, people believe that there are 
stronger obligations to help family members compared 
to non-family members (Marshall et al., 2020, 2022; 
McManus et al., 2020, 2021), leading to neglect of family 
members being judged as more unexpected (see SOM of 
McManus et al., 2020). Additionally, people seem to 
experience stronger prediction error when they imagine 
witnessing close (versus distant) others commit crimes 
(Berg et al., 2021), which may be due to their having 
stronger positive priors about close others (see Hughes, 
Ambady, et al., 2017; Hughes, Zaki, et al., 2017; Kim, Park, 
et al., 2020). Future research can shed more light on the 
neural mechanisms involved in using relationship infor
mation to make and monitor predictions about an 
agent’s mental states and behavior.
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Second, the current experiment did not systemati
cally vary the social context in which expectations were 
confirmed or violated, which may alter if and how social 
prediction error occurs. For example, imagine that an 
agent thinks to herself, “I want to speak up the next 
time I hear a sexist joke about women.” However, the 
next time she hears a sexist joke is at her workplace 
where all of her colleagues are men. When she fails to 
speak up, you may be unsurprised, perhaps because you 
understand that she might experience additional nega
tivity at her workplace in the future. Conversely, if at 
least half of her colleagues were women, you may be 
extremely surprised when she fails to speak up, perhaps 
because you believe she would have wanted to alleviate 
the possible discomfort experienced by her same- 
gendered colleagues. Such an example suggests that 
there are many potential features of the social context 
that can affect predictions and therefore what is consid
ered unexpected, such as an agent’s reputational con
cerns, the demographic composition of surrounding 
others, and more.

Additionally, this example demonstrates that the time 
point at which a prediction is made, and whether this 
prediction is updated, is a crucial factor. If you were to 
predict the woman’s behavior at the exact time a sexist 
joke occurred, you might make starkly different predic
tions based on her social context. If, however, you pre
dicted the woman’s behavior at an earlier time (e.g., the 
time at which you first learned she imagined speaking 
up), you may or may not update your prediction based on 
the context in which the sexist joke occurs. While recent 
work has documented that people update their (moral) 
impressions of others through learning more about the 
agents’ past behaviors (see Brambilla et al., 2019; 
Ferguson & Mann, 2017; Kim, Park, et al., 2021), less is 
known about how people update their predictions of an 
agent’s single future behavior over time. Future research 
could investigate the conditions under which predictions 
are updated and how this relates to prediction error (see 
Bach & Schenke, 2017, for a detailed discussion).

Third, although we failed to detect interaction effects 
based on the sources of information used to make and 
violate predictions, it is unlikely that such effects would 
never occur. For example, imagine learning that someone 
thought to himself, “I really hate my coworkers and my role 
in this company. I want to quit.” When he continues to go 
into work, you may not be very surprised because you 
realize that people often think and want to do things that 
they do not do. However, if he instead sent out a company- 
wide e-mail stating, “I really hate my coworkers and my role 
in this company. I’m going to quit,” you might be extremely 
surprised when he continues to go into work. The critical 
difference between these cases is that the agent’s prior 

behavior seems to leave no doubt about his near-future 
intentions. We may not have seen such effects in the cur
rent data because most of the agents’ prior behaviors did 
not yield near-certain predictions. Interestingly, follow-up 
behavioral and behavior-brain analyses of our data suggest 
that vignette-level prediction confidence indeed varied 
substantially and was positively related to the difference 
in vignette-level neural activity during expectation confir
mation/violation (see SOM Table 3). Unfortunately, we did 
not have enough condition-specific data to address 
whether prior information moderated these relations.

It is possible that our experimental paradigm was 
responsible for the observed null interactions. That is, 
after participants saw the first few stimuli, they would 
have become aware that they would have to continually 
make predictions about future behavior or future mental 
states based on both prior behavior and prior mental 
states. Once this awareness set in, it is possible (even 
likely) that participants were generating future behavior 
and future mental state predictions for each stimulus. 
This could have led to non-interactions between prior 
and future information on unexpectedness-related 
neural activity. Therefore, although our experimental 
paradigm was designed to address potential alternative 
explanations for prior research (i.e., Dungan et al., 2016), 
it may have fundamentally altered the psychological 
experience that we intended to study. Moreover, per
haps our paradigm exaggerated the effect of expecta
tion violations. Specifically, in the real world, people may 
not engage in explicit predictions in the way that our 
participants did. Therefore, perhaps prompting explicit 
predictions led to artificial but equally strong predictions 
across information types, leading to the observed null 
interactions.

We opted for the explicit prediction methodology 
for two reasons: first to ensure that participants 
indeed engaged in prediction, and second to con
strain the kinds of predictions made so that different 
participants would not be making different predic
tions. However, even though we attempted to control 
the experimental environment and constrain the 
types of predictions made as much as possible (i.e., 
behavior vs mental state), participants were likely to 
spontaneously generate mental state inferences 
regardless of the information presented. The reason 
for this, we propose, is that our experimental task 
(i.e., social prediction) may fundamentally rest on 
mental state inferences, as trying to predict 
a target’s future mental states or behavior requires 
inferring the beliefs of the target. As an additional 
example of an experimental task that supports this 
point, prior research shows that people engage in 
spontaneous mental state inference when making 
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moral judgments (Young & Saxe, 2009), as making 
moral judgments demands inferring the beliefs and 
intentions of a transgressor. This possibility results in 
two falsifiable predictions. Specifically, if participants 
spontaneously generate mental state inferences, then 
neural activity should have been similar for behavior 
and mental state stimuli immediately following the 
Initial Info segment. Additionally, participants should 
be equally good at choosing “correct” mental state 
outcomes during the Prediction segment, regardless 
of the Initial Info type. Both predictions were sup
ported in our data. First, in the Initial Info segment, 
ToM recruitment was similar in magnitude for beha
vioral versus mental state information. Second, in the 
Prediction segment, participants were similarly likely 
to make the “correct” mental state prediction follow
ing Initial Info that was behavioral versus mental 
state (i.e., being correct on 88% vs 87% of trials, 
respectively). Therefore, our data suggest one of two 
theoretically plausible possibilities: ToM regions flex
ibly incorporate any available social information in 
order to make predictions and monitor their viola
tion/confirmation, or, regardless of what type of 
social information is perceived, ToM regions sponta
neously generate mental state inferences to use for 
prediction and then monitor their violation/conforma
tion. Consequently, future, more targeted, research is 
needed to better understand if and when prior beha
vior (or mental state) information leads to stronger 
predictions and its consequences on prediction error.

Last, there have been continued calls to communi
cate “constraints on generalizability” in psychology 
and neuroscience research (Simons et al., 2017; 
Yarkoni, 2020). In addition to the above limitations, it 
is unclear if our recruited fMRI participants are repre
sentative of most people. Recent work suggests that 
fMRI research suffers from generalizability issues. 
Specifically, fMRI samples tend to be lower in trait 
anxiety than behavioral samples (Charpentier et al.,  
2021), suggesting a self-selection bias. Since past 
research has linked anxiety to ToM abilities 
(Washburn et al., 2016) and difficulty in understand
ing/completing ToM tasks (Lenton-Brym et al., 2018), 
future research on social prediction error would bene
fit from considering the role of anxiety and other 
individual differences.

Conclusion

The current research found that brain regions implicated 
in theory of mind (ToM: DMPFC, LTPJ, and RTPJ) are 
especially responsive to an agent’s unexpected behavior 

or mental states based on knowledge of their prior 
behavior or mental states. These findings also suggest 
that ToM regions may not discriminate in their sensitivity 
to expectedness based on information type, though 
additional research is needed to conclusively provide 
evidence for or against this possibility. Overall, these 
findings replicate recent research consistent with 
a predictive coding account of the neural computations 
underlying ToM (Koster-Hale & Saxe, 2013), and lay the 
foundation for future research investigating when, how, 
and for whom certain kinds of prior social knowledge 
give rise to robust predictions and therefore shape pre
diction error signals.
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